Oxidative Decolorization of Azo Dyes with Copper Phthalocyanine Supported Mg-Al Hydrotalcites

Article Preview

Abstract:

Oxidative decolorization of azo dyes with a heterogeneous catalyst copper phthalocyanine supported Mg-Al hydrotalcites was studied and the influence factors such as initial pH value, temperature, H2O2 and CuPc-LDHs/H2O2 system were discussed. The results indicated that acidic solution and high temperature were conducive to oxidative decoloration of methyl orange. CuPc-LDHs/H2O2 system showed excellent oxidative decoloration capacity to remove azo dyes. The effects of oxidative decolorization of azo dyes were related to the molecular structure and weight of azo dyes. Oxidative decoloration effects followed the order as congo red > amido black > methyl blue> methyl orange> methylene blue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-310

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Ignacio, F. Diana, F. G. Jorge, A. W. Erika, A kinetic study of textile dyeing wastewater degradation by penicillium chrysogenum, Bioproc. Biosyst. Eng. 38 (2015) 1019-1031.

DOI: 10.1007/s00449-014-1344-9

Google Scholar

[2] R. Khan, P. Bhawana, M. H. Fulekar, Microbial decolorization and degradation of synthetic dyes: a review, Rev. Environ. Sci. Biotechnol. 12 (2013) 75-97.

DOI: 10.1007/s11157-012-9287-6

Google Scholar

[3] C. C. Hsueh, B. Y. Chen, Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola, J. Hazard Mater. 154 (2008) 703-710.

DOI: 10.1016/j.jhazmat.2007.10.083

Google Scholar

[4] J. Peng, S. Lee, Atmospheric pressure plasma degradation of azo dyes in water: ph and structural effects, Plasma Chem. Plasma P. 33 (2013) 1063-1072.

DOI: 10.1007/s11090-013-9483-3

Google Scholar

[5] C. O'Neill, A. Lopez, S. Esteves, F. R. Hawkes, D. L. Hawkes, S. Wilcox, Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent, Appl. Microbiol. Biotechnol. 53 (2000) 249-254.

DOI: 10.1007/s002530050016

Google Scholar

[6] R.V. Solomon, I. S. Lydia, J. P. Merlin, P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4, J. Iran. Chem. Soc. 9 (2012) 101-109.

DOI: 10.1007/s13738-011-0033-8

Google Scholar

[7] F. Scaglione, L. Battezzati, Metastable microstructures containing zero valent iron for fast degradation of azo dyes, J. Mater. Sci. 50 (2015) 5238-5243.

DOI: 10.1007/s10853-015-9071-4

Google Scholar

[8] I. K. Konstantinou, T. A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B Environ. 49 (2004) 1-14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[9] A. Saffar-Teluri, S. Bolouk, M. H. Amini, Synthesis of ZnO microcrystals and their photocatalytic ability in the degradation of textile azo dyes, Res. Chem. Intermed. 39 (2013) 3345-3353.

DOI: 10.1007/s11164-012-0847-8

Google Scholar

[10] W. X. Chen, W. Y. Lu, Y. Y. Yao, M. H. Xu, Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber supported cobalt phthalocyanine, Environ. Sci. Technol. 41 (2007) 6240-6245.

DOI: 10.1021/es070002k

Google Scholar

[11] M. Xu, Y. Cao, X. Ma, Kinetic Research on catalytic degradation of rhodamine B with cobalt phthalocyanine supported Mg-Al hydrotalcite, J. Nanosci. Nanotechno. 15 (2015) 1-4.

DOI: 10.1166/jnn.2016.10816

Google Scholar

[12] M. Hou, F. Li, X. Liu, X. Wang, H. Wan, The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron, J. Hazard. Mater. 145 (2007) 305-314.

DOI: 10.1016/j.jhazmat.2006.11.019

Google Scholar