[1]
El-Sheikh S M, Zhang G, El-Hosainy H M, et al. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation, Journal of Hazardous Materials, 280C(2014).
DOI: 10.1016/j.jhazmat.2014.08.038
Google Scholar
[2]
Shang M, Wang W, Sun S, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible Light, J. phys. chem. c, 112(2008) 10407-10411.
DOI: 10.1021/jp802115w
Google Scholar
[3]
Wang Y, Deng K, Zhang L, Visible light Photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification, Journal of Physical Chemistry C, 115(2011) 14300-14308.
DOI: 10.1021/jp2042069
Google Scholar
[4]
Yong Cai Z, Jing L, Ming Z, Dionysiou, D. D, Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Environmental Science & Technology, 45(2011) 9324-9331.
DOI: 10.1021/es202012b
Google Scholar
[5]
Feifei G, Yuan W, Dong S, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, Journal of the American Chemical Society, 130(2008).
DOI: 10.1021/ja801942j
Google Scholar
[6]
Fu X, Hu Y, Yang Y, et al. Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO2, Journal of Hazardous Materials, 244-245(2013) 102–110.
DOI: 10.1016/j.jhazmat.2012.11.033
Google Scholar
[7]
Zhang Z, Long J, Xie X, et al. Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction, Applied Catalysis A General, s 425–426(2012) 117–124.
DOI: 10.1016/j.apcata.2012.03.008
Google Scholar
[8]
Ge L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation, Mater. Lett., 62(2008) 926-928.
DOI: 10.1016/j.matchemphys.2007.08.016
Google Scholar
[9]
Zhou L, Wang W Z, Xu H L, Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy, Cryst. Growth Des, 8(2008) 728-733.
DOI: 10.1021/cg0705761
Google Scholar
[10]
Liu Ye, MA Jun-Feng , LIU Zhen-Sen, et al. Low-temperature synthesis of BiVO4 crystallites in molten salt medium and their UV–vis absorption. Ceramics, International, 36(2010) 2073–(2077).
DOI: 10.1016/j.ceramint.2010.06.003
Google Scholar
[11]
Zhu G, Que W, Hydrothermal synthesis and characterization of visible-light-driven dumbbell-like BiVO4 and Ag/BiVO4 photocatalysts, Journal of Cluster Science, 24(2013) 531-547.
DOI: 10.1007/s10876-012-0531-6
Google Scholar
[12]
Hui X, Li H, Wu C, et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4, Journal of Hazardous Materials, 153(2008) 877-884.
DOI: 10.1016/j.jhazmat.2007.09.039
Google Scholar
[13]
Schwochow F. Bismuth vanadate pigments, a process for their preparation and their use: US, US 5203917 A[P]. (1993).
Google Scholar
[14]
Wang M, Liu Q, Che Y, et al. Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method, Journal of Alloys & Compounds, 548(2013) 70–76.
DOI: 10.1016/j.jallcom.2012.08.140
Google Scholar
[15]
Gao X, Feng F U, L Lei, Preparation of Cu-BiVO4 photocatalyst and its application in the treatment of phenol-containing wastewater, Chemical Industry & Engineering Progress, 29(2012) 30-34.
Google Scholar