Fabrication of In Situ TiC Reinforced Ti Matrix Composites by Thermomechanical Consolidation of TiH2/CNTs Powder Mixtures

Article Preview

Abstract:

In this work, in-situ TiC reinforced Ti matrix composites (TMCs) have been fabricated via blending TiH2 powder and multi-walled carbon nanotubes (CNTs) followed by thermomechanical consolidation of the TiH2/CNTs powder mixture. The dehydrogenation, in situ reaction and consolidation occurred simultaneously and took less than 15 minutes in total. The effect of CNTs content (1 and 3 vol.% (0.56 and 1.69 wt.%)) on the evolution of microstructures and mechanical performances of the extruded samples has been investigated. The results showed that the extruded TMCs had a duplex microstructure consisting of coarse alpha titanium grains and ultrafine grained (UFG) regions, and the in-situ formed TiC particles had a near-spherical shape. The extruded sample with 1 vol.% (0.56 wt.%) CNTs reinforced exhibited a yield strength of 807.3 MPa, ultimate tensile strength of 1085.9 MPa and elongation to fracture of 3.3% at room temperature. The mechanism of microstructural evolution and material failure are discussed.e are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-67

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ranganath: Journal of Materials Science, 32 (1997), pp.1-16.

Google Scholar

[2] K. Panda and K. Chandran: Acta Materialia, 54 (2006), pp.1641-1657.

Google Scholar

[3] Y. Tanaka, J.M. Yang, Y.F. Liu and Y. Kagawa: Scripta Materialia, 56 (2007), pp.209-212.

Google Scholar

[4] L. Yanbin, L. Yong, T. Huiping, W. Bin and L. Bin: Journal of Alloys and Compounds, 509 (2011), pp.3592-3601.

DOI: 10.1016/j.jallcom.2010.12.086

Google Scholar

[5] W.J. Lu, D. Zhang and X.N. Zhang: Journal of Alloys and Compounds, 327 (2001), pp.248-252.

Google Scholar

[6] S. Li, B. Sun, H. Imai and K. Kondoh: Carbon, 61 (2013), pp.216-228.

Google Scholar

[7] W. Lee, H. Shin and W.Y. Lee: Scripta Materialia, 48 (2003), pp.719-724.

Google Scholar

[8] M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim and S.H. Hong: Scripta Materialia, 66 (2012), pp.487-490.

Google Scholar

[9] D.R. Ni , L. Geng, J. Zhang and Z.Z. Zheng: Scripta Materialia, 55 (2006), pp.429-432.

Google Scholar

[10] J. Zhang, L. Wang, W. Jiang and L. Chen: Materials Science and Engineering A, 487 (2008), pp.137-143.

Google Scholar

[11] D.R. Ni, L. Geng, J. Zhang and Z.Z. Zheng: Materials Letters, 62 (2008), pp.686-688.

Google Scholar

[12] B.V.R. Bhat, J. Subramanyam and V.V.B. Prasad: Materials Science and Engineering A, 325 (2002), pp.126-130.

Google Scholar

[13] Z.Y. MA, S.C. Tjong and L. Gen: Scripta Materialia, 42 (2000), pp.367-373.

Google Scholar

[14] A. Vyas, K.P. Rao and Y.V.R.K. Prasad: Journal of Alloys and Compounds, 475 (2009), pp.252-260.

Google Scholar

[15] W.J. Lu, D. Zhang and X.N. Zhang: Materials Science and Engineering A, 311 (2001), pp.142-150.

Google Scholar

[16] Z.G. Zhang, J.N. Qin, Z.W. Zhang, Y.F. Chen, W.J. Lu and D. Zhang: Materials Letters, 64 (2010), pp.361-363.

Google Scholar

[17] W.J. Lu, D. Zhang and X.N. Zhang: Journal of Alloys and Compounds, 327 (2001), pp.240-247.

Google Scholar

[18] Y.Z. Zhang, J.C. Sun and R. Vilar: Journal of Materials Processing Technology, 211 (2011), pp.597-601.

Google Scholar

[19] Y. J. Kim, H. Chung and S.J.L. Kang: Materials Science and Engineering A, 333(2002), pp.343-350.

Google Scholar

[20] Y. J. Kim, H. Chung and S.J.L. Kang: Composites Part A: Applied Science and Manufacturing, 32(2001), pp.731-738.

Google Scholar

[21] H.T. Wang, M. Lefler, Z. Z. Fang, T. Lei, S.M. Fang, J.M. Zhang and Q. Zhao: Key Engineering Materials, 436(2010), pp.157-163.

Google Scholar

[22] Z.Z. Fang, P. Sun and H. Wang: Advanced Engineering Materials, 146(2012), pp.383-387.

Google Scholar

[23] S.D. Luo, Y.F. Yang, G.B. Schaffer and M. Qian: Scripta Materialia, 69 (2013), pp.69-72.

Google Scholar

[24] O.M. Ivasishin and D.G. Savvakin: Key Engineering Materials, 436(2010), pp.113-121.

Google Scholar

[25] J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran and M. Dunstan: Scripta Materialia, 107 (2015), pp.103-106.

DOI: 10.1016/j.scriptamat.2015.05.032

Google Scholar

[26] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff: Science, 287(2000), pp.637-640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[27] S. Li, B. Sun, H. Imai, T. Mimoto and K. Kondoh: Composites Part A: Applied Science and Manufacturing, 48(2013), pp.57-66.

DOI: 10.1016/j.compositesa.2012.12.005

Google Scholar

[28] K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda and B. Fugetsu: Composites Science and Technology, 69 (2009), pp.1077-1081.

DOI: 10.1016/j.compscitech.2009.01.026

Google Scholar

[29] E. Neubauer, M. Kitzmantel, M. Hulman and P. Angerer: Composites Science and Technology, 70 (2010), pp.2228-2236.

DOI: 10.1016/j.compscitech.2010.09.003

Google Scholar

[30] F. Xue, J.H. Sun, F. Yan and C. Wei: Materials Science and Engineering A, 527 (2010), pp.1586-1589.

Google Scholar

[31] M. Niinomi: Materials Science and Engineering A, 243 (1998), pp.231-236.

Google Scholar