Effect of Colorant Additive and Thickness on Tensile Properties of Oxo-Biodegradable PE Plastic Bags in Alkaline Solution

Article Preview

Abstract:

Polyethylene (PE) is widely used as packaging materials in the form of plastic bags. After end-use, some of these plastic bags are not properly disposed and may persist in different kinds of environment. Oxo-biodegradable plastics are PE films incorporated with pro-oxidants to promote degradation. As part of the continuing study, changes on the tensile properties of oxo-biodegradable PE plastic bags immersed in alkaline solution at 60 °C are investigated. The effects of colorant additive (varied at two levels) and thickness (varied at three levels) on tensile properties of PE films are reported. Specifically, the tensile strength [MPa], strain at break [%], and elastic modulus [MPa] are monitored with time. It is observed that films undergo degradation which is exhibited by a decrease in all tensile properties after 1008 hours of immersion in alkaline solution. Analysis of variance (ANOVA) shows that the initial tensile strength and elastic modulus, as well as the strain at break and elastic modulus after 1008 hours of immersion, are all affected by colorant additive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-81

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Fu, Y. Men, G. Strobl, Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology, Polymer 44 (2003) 1927-(1933).

DOI: 10.1016/s0032-3861(02)00940-0

Google Scholar

[2] K. Cho, B.H. Lee, K. Hwang, H. Lee, S. Choe, Rheological and mechanical properties in polyethylene blends, Polym. Eng. Sci. 38 (1998) 1969-(1975).

DOI: 10.1002/pen.10366

Google Scholar

[3] I. Jakubowicz, N. Yarahmadi, H. Petersen, Evaluation of the rate of abiotic degradation of biodegradable polyethylene in various environments, Polym. Degrad. Stab. 91 (2006) 1556-1562.

DOI: 10.1016/j.polymdegradstab.2005.09.018

Google Scholar

[4] P.K. Roy, S. Titus, P. Surekha, E. Tulsi, C. Deshmukh, C. Rajagopal, Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium, Polym. Degrad. Stab. 93 (2008) 1917-(1922).

DOI: 10.1016/j.polymdegradstab.2008.07.016

Google Scholar

[5] G.L. Leuterio, B. Pajarito, Sorption kinetics of pro-oxidant-loaded PE plastic bags in aqueous media, Adv. Mat. Res. 1125 (2015) 240-244.

DOI: 10.4028/www.scientific.net/amr.1125.240

Google Scholar

[6] R. Maalihan, B. Pajarito, Effect of colorant on tensile strength and carbonyl index of oxo-biodegradable low-density PE films during thermal aging, Adv. Mat. Res. 1125 (2015) 235-239.

DOI: 10.4028/www.scientific.net/amr.1125.235

Google Scholar

[7] J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean, Mar. Pollut. 347 (2015) 768-771.

DOI: 10.1126/science.1260352

Google Scholar

[8] L.B. Gomes, J.M. Klein, R.N. Brandalise, M. Zeni, B.C. Zoppas, A.M.C. Grisa, Study of oxo-biodegradable polyethylene degradation in simulated soil, J. Mater. Res. 17 (2014) 121-126.

DOI: 10.1590/1516-1439.224713

Google Scholar

[9] J.L. Pablos, C. Abrusi, I. Marín, J. López-Marín, F. Catalina, E. Espí, T. Corrales, Photodegradation of polyethylenes: Comparative effect of Fe and Ca-stearates as pro-oxidant additives, Polym. Degrad. Stab. 95 (2010) 2057-(2064).

DOI: 10.1016/j.polymdegradstab.2010.07.003

Google Scholar

[10] R.D. Maalihan, B.B. Pajarito, Effect of colorant, thickness, and pro-oxidant loading on degradation of LDPE films during thermal aging, J. Plast. Film Sheet. 8756087915590276 (2015).

DOI: 10.1177/8756087915590276

Google Scholar

[11] A. Benítez, J.J. Sánchez, M.L. Arnal, A.J. Müller, Monitoring abiotic degradation of branched polyethylenes formulated with pro-oxidants through different mechanical tests, Polym. Degrad. Stab. 98 (2013) 1705-1716.

DOI: 10.1016/j.polymdegradstab.2013.06.004

Google Scholar

[12] B. Pajarito, C. A de Torres, M. Maningding, Effect of ingredient loading on surface migration kinetics of additives in vulcanized natural rubber compounds, Sci. Diliman 26 (2014) 1-35.

Google Scholar

[13] B. Pajarito, Effect of ingredient loading on vulcanization characteristics of a natural rubber compound, Adv. Mat. Res. 1125 50 (2015) 50-54.

DOI: 10.4028/www.scientific.net/amr.1125.50

Google Scholar

[14] J. Arabit, B. Pajarito, Effect of ingredient loading on surface migration of additives in a surfactant-loaded natural rubber vulcanizate, Adv. Mat. Res. 1125 (2015) 64-68.

DOI: 10.4028/www.scientific.net/amr.1125.64

Google Scholar

[15] J. M. Gere, Mechanics of Materials, sixth ed., Thomson, California (2004).

Google Scholar

[16] D.M. Panaitescu, C. Radovici, M. Ghiurea, H. Paven, M.D. Iorga, Influence of rutile and anatase TiO2 nanoparticles on polyethylene properties, Polymer Plast. Tech. Eng. 50 (2011) 196-202.

DOI: 10.1080/03602559.2010.531431

Google Scholar

[17] V.M. Tuan, D.W. Jeong, H.J. Yoon, S. Kang, N.V. Giang, T. Hoang, T.I. Thinh, M.Y. Kim, Int. Using rutile TiO2 nanoparticles reinforcing high density polyethylene resin, J. Polym. Sci. 2014 (2014) 1-7.

DOI: 10.1155/2014/758351

Google Scholar

[18] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans. (2003) 3898-3901.

DOI: 10.1039/b305585j

Google Scholar