TiO2-SiO2 Gel Photocatalytic Degradation of Methylene Blue and Composite Energy Gap Calculation

Article Preview

Abstract:

The objectives of this study were to mix TiO2 and SiO2 gel for photo catalyzing in methylene blue and calculated energy gap of TiO2- SiO2 gel composite. Nanoparticles of TiO2-doped SiO2 gels have been synthesized for use as composites in photodegradation of methylene blue. SiO2 gel was synthesized by a sol-gel method from rice husk ash. TiO2 was synthesized by microwave method from TiOSO4. The composite of TiO2-SiO2 was prepared by mixing of 25% wt TiO2 and 75% wt SiO2 gel and SiO2 gel bead. This work can be dived into two kinds of TiO­2 sources were TiO2 from microwave synthesis (MW) and TiO2 from P25. The UV absorption values of methylene blue after used TiO2-SiO2 composite were measured. Wavelengths of composites were measured by Uv-vis reflectometer and energy gap were calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-98

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. R. Kiasat, S. Nazari, J. Davarpanah, Facile synthesis of an organic–inorganic nanocomposite, PEG–silica, by sol–gel method; its characterization and application as an efficient catalyst in regioselective nucleophilic ring opening of epoxides: Preparation of β-azido alcohols and β-cyanohydrins, Cr. Acad. Sci. II C. 17 (2) (2014).

DOI: 10.1016/j.crci.2013.07.008

Google Scholar

[2] Noritaka Kato, Nao Kato, High-yield hydrothermal synthesis of mesoporous silica hollow capsules, Micropor. Mesopor. Mat. 219 (2016) 230-239.

DOI: 10.1016/j.micromeso.2015.08.015

Google Scholar

[3] N. Pijarn, A. Jaroenworaluck, W. Sunsaneeyametha, R. Stevens, Synthesis and characterization of nanosized-silica gels formed under controlled conditions, Powder Technol. 203 (2010) 462–468.

DOI: 10.1016/j.powtec.2010.06.007

Google Scholar

[4] N. Pijarn, P. Galajak, New insight technique for synthesis of silica gel from rice husk ash by using microwave radiation" Adv. Mat. Res. 1025-1026 (2014) 574-579.

DOI: 10.4028/www.scientific.net/amr.1025-1026.574

Google Scholar

[5] A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[6] N. Serpone, D. Dondi, A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta. 360 (2007) 794-802.

DOI: 10.1016/j.ica.2005.12.057

Google Scholar

[7] T. A. Egerton, N. J. Everall, J. A. Mattinson, L. M. Kessell, I. R. Tooley, Interaction of TiO2 nano-particles with organic UV absorbers, J. Photoch. Photobio A. 193 (2008) 10-17.

DOI: 10.1016/j.jphotochem.2007.06.001

Google Scholar

[8] S. Yabe, T. Sato, Cerium oxide for sunscreen cosmetics, J. Solid. State. Chem. 171 (2003) 7-11.

DOI: 10.1016/s0022-4596(02)00139-1

Google Scholar

[9] A. Jaroenworaluck, N. Pijarn, N. Kosachan, R. Stevens, Nanocomposite TiO2–SiO2 gel for UV absorption, Chem. Eng. J. 181–182 (2012) 45-55.

DOI: 10.1016/j.cej.2011.08.028

Google Scholar

[10] J. -X. Yu, R. -A. Chi, J. Guo, Y. -F. Zhang, Z. -G. Xu, C. -Q. Xiao, Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol, Appl. Surf. Sci. 258(8) (2012) 4085-4090.

DOI: 10.1016/j.apsusc.2011.12.106

Google Scholar

[11] Y.J. Acosta-Silva, R. Nava, V. Hernández-Morales, S.A. Macías-Sánchez, B. Pawelec, TiO2/DMS-1 disordered mesoporous silica system: Structural characteristics and methylene blue photodegradation activity, Micropor. Mesopor. Mat. 170 (2013).

DOI: 10.1016/j.micromeso.2012.11.027

Google Scholar

[12] N. K. Pal, C. Kryschi, A facile UV-light mediated synthesis of l-histidine stabilized silver nanocluster for efficient photodegradation of methylene blue, J. Mol. Catal. A-Chem. 404–405 (2015) 27-35.

DOI: 10.1016/j.molcata.2015.04.004

Google Scholar

[13] I. H. Chowdhury, S. Ghosh, M. K. Naskar, Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue, Ceram. Int. 42(2) Part A (2016) 2488-2496.

DOI: 10.1016/j.ceramint.2015.10.049

Google Scholar

[14] N. Pijarn, A. Jaroenworaluck, Preparation of Silica gel bead by sol-gel method from rice husk ash, Prototype, NSTDA, Thailand (2009).

Google Scholar

[15] N. Pijarn, S. Jeimsirilers, S. Jinawath, Photocatalytic activity of mixed phase TiO2 from microwave-assisted synthesis, Adv. Mater. Res. 664 (2013) 661-666.

DOI: 10.4028/www.scientific.net/amr.664.661

Google Scholar

[16] JISC, Fine ceramics (advanced ceramics, advanced technical ceramics)-Determination of photocatalytic activity of surfaces in aqueous medium by degradation of methylene blue, ISO TC 206/SC N614, ISO/CD 10678, ISO TC 206/SC WG 37, 2008, pp.1-12.

DOI: 10.3403/30184698u

Google Scholar

[17] V. Balzani, F. Scandola, Supramolecular photochemistry, Ellis Horwood Limited, Chichester, (1991).

Google Scholar

[18] J. Aguado, R. van Grieken, M. J. López-Muñoz, J. Marugán, A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts, Appl. Catal. A-Gen. 312 (2006) 202-212.

DOI: 10.1016/j.apcata.2006.07.003

Google Scholar

[19] M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, M. Rekas, Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2-x, J. Power Sources. 173 (2007) 816-821.

DOI: 10.1016/j.jpowsour.2007.05.065

Google Scholar

[20] B. Liu, X. Zhao, K. Nakata, A. Fujishima, Construction of hierarchical titanium dioxide nanomaterials by tuning the structure of polyvinylpyrrolidone–titanium butoxide complexes from 2- to 3-dimensional, J. Mater. Chem. A 1 (2013) 4993-5000.

DOI: 10.1039/c3ta01083j

Google Scholar