Photodegradation of Methylene Blue Using Titanium Dioxide in Different Lighting Area

Article Preview

Abstract:

The objectives of this work were to investigate the degradation of methylene blue (MB) by titanium dioxide (TiO2) photocatalyst in dark or no lighting area (NL), the common fluorescent lighting area (FL), and direct sun lighting area (SL). The experimental sections were carried on sol gel method of TiO2 synthesis, the 100 mg of photocatalytic sample was put in 2.0 ppm methylene blue (MB) dye solution, hold in the dark area for 30 minutes to equilibrium state, after that the sample solution can be divided into three area holder that are NL, FL and SL. The degradation rates were studied with UV-Vis spectrophotometric method. The solution hold in the NL area has lower percent degradation than the other, while the solution hold in FL area has higher percent degradation than the other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima and K. Honda: Nature. 238 (1972) 37.

Google Scholar

[2] Information on https: /en. wikipedia. org/wiki/Titanium_dioxide.

Google Scholar

[3] D. Yu, W. Zhou, Y. Liu, P. Wu, Magnetic and optical properties of Al-doped anatase TiO2 (101) surface from density functional theory, J. Magn. Magn. Mater., 404 (2016), 7-13.

DOI: 10.1016/j.jmmm.2015.12.013

Google Scholar

[4] Information on http: /www. cefic. org/Documents/TDMA/About-TiO2-full-version-July- 2013. pdf.

Google Scholar

[5] Z. E. Papliaka1, N. Wendland, E. A. Varella, The Protective role of titanium dioxide pigments on pictorials artworks in contaminated indoor environments, Moran RTD d. o. o publishing e-PS (2010).

Google Scholar

[6] M. F. La Russa, N. Rovella, M. A. de Buergo, C. M. Belfiore, A. Pezzino, G. M. Crisci, S. A. Ruffolo, Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy, Prog. Org. Coat. 91 (2016).

DOI: 10.1016/j.porgcoat.2015.11.011

Google Scholar

[7] S. Ananthakumar, J. Ramkumar, S. M. Babu, Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices, Renew. Sustainable Energy Rev. 57 (2016) 1307-1321.

DOI: 10.1016/j.rser.2015.12.129

Google Scholar

[8] I. B. Assaker, M. Gannouni, J. B. Naceur, M. A. Almessiere, A. L. Al-Otaibi, T. Ghrib, S. Shen, R. Chtourou, Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications, Appl. Surf. Sci. 351 (2015).

DOI: 10.1016/j.apsusc.2015.06.038

Google Scholar

[9] S. Waseem, S. Anjum, L. Mustafa, F. Bashir, N. Mohsin, Investigations of structural, optical, electrical and magnetic properties of TiO2 based dilute magnetic semiconductors doped with TM where (TM= Fe0. 1, Cr0. 1, Fe0. 06Cr0. 04), Materials Today: Proceedings. 2, 10 Part B (2015).

DOI: 10.1016/j.matpr.2015.11.130

Google Scholar

[10] S.R.P. Silva, M.J. Beliatis, K.D.G.I. Jayawardena, C.A. Mills, R. Rhodes, L.J. Rozanski, Handbook of Flexible Organic Electronics, 2015, pp.57-84.

DOI: 10.1016/b978-1-78242-035-4.00003-8

Google Scholar

[11] I. L-Heras, Y. Madrid, C. Cámara, Prospects and difficulties in TiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry Original, Talanta. 124 (2014).

DOI: 10.1016/j.talanta.2014.02.029

Google Scholar

[12] A. Antonello, G. Soliveri, D. Meroni, G. Cappelletti, S. Ardizzone, Photocatalytic remediation of indoor pollution by transparent TiO2 films, Catal. Today. 230 (2014) 35-40.

DOI: 10.1016/j.cattod.2013.12.033

Google Scholar

[13] S. Khaoulani, H. Chaker, C. Cadet, E. Bychkov, L. Cherif, A. Bengueddach, S. Fourmentin, Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts Comptes Rendus Chimie. 18-1 (2015) 23-31.

DOI: 10.1016/j.crci.2014.07.004

Google Scholar

[14] Kunyang Chen, Lizhong Zhu, Kun Yang, Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air, J. Environ. Sci. 32 (2015) 189-195.

DOI: 10.1016/j.jes.2014.10.023

Google Scholar

[15] N. Pijarn, S. Jeimsirilers, S. Jinawath, Photocatalytic activity of mixed phase TiO2 from microwave-assisted synthesis, Adv. Mater. Res. 664 (2013) 661-666.

DOI: 10.4028/www.scientific.net/amr.664.661

Google Scholar

[16] JISC, Fine ceramics (advanced ceramics, advanced technical ceramics)-Determination of photocatalytic activity of surfaces in aqueous medium by degradation of methylene blue, ISO TC 206/SC N614, ISO/CD 10678, ISO TC 206/SC WG 37, 2008, pp.1-12.

DOI: 10.3403/30184698u

Google Scholar

[17] P. Bouguer, E. d'Optique, sur la gradation de la lumiere (Paris, France: Claude Jombert, 1729), p.16.

Google Scholar