[1]
A. Fujishima and K. Honda: Nature. 238 (1972) 37.
Google Scholar
[2]
Information on https: /en. wikipedia. org/wiki/Titanium_dioxide.
Google Scholar
[3]
D. Yu, W. Zhou, Y. Liu, P. Wu, Magnetic and optical properties of Al-doped anatase TiO2 (101) surface from density functional theory, J. Magn. Magn. Mater., 404 (2016), 7-13.
DOI: 10.1016/j.jmmm.2015.12.013
Google Scholar
[4]
Information on http: /www. cefic. org/Documents/TDMA/About-TiO2-full-version-July- 2013. pdf.
Google Scholar
[5]
Z. E. Papliaka1, N. Wendland, E. A. Varella, The Protective role of titanium dioxide pigments on pictorials artworks in contaminated indoor environments, Moran RTD d. o. o publishing e-PS (2010).
Google Scholar
[6]
M. F. La Russa, N. Rovella, M. A. de Buergo, C. M. Belfiore, A. Pezzino, G. M. Crisci, S. A. Ruffolo, Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy, Prog. Org. Coat. 91 (2016).
DOI: 10.1016/j.porgcoat.2015.11.011
Google Scholar
[7]
S. Ananthakumar, J. Ramkumar, S. M. Babu, Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices, Renew. Sustainable Energy Rev. 57 (2016) 1307-1321.
DOI: 10.1016/j.rser.2015.12.129
Google Scholar
[8]
I. B. Assaker, M. Gannouni, J. B. Naceur, M. A. Almessiere, A. L. Al-Otaibi, T. Ghrib, S. Shen, R. Chtourou, Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications, Appl. Surf. Sci. 351 (2015).
DOI: 10.1016/j.apsusc.2015.06.038
Google Scholar
[9]
S. Waseem, S. Anjum, L. Mustafa, F. Bashir, N. Mohsin, Investigations of structural, optical, electrical and magnetic properties of TiO2 based dilute magnetic semiconductors doped with TM where (TM= Fe0. 1, Cr0. 1, Fe0. 06Cr0. 04), Materials Today: Proceedings. 2, 10 Part B (2015).
DOI: 10.1016/j.matpr.2015.11.130
Google Scholar
[10]
S.R.P. Silva, M.J. Beliatis, K.D.G.I. Jayawardena, C.A. Mills, R. Rhodes, L.J. Rozanski, Handbook of Flexible Organic Electronics, 2015, pp.57-84.
DOI: 10.1016/b978-1-78242-035-4.00003-8
Google Scholar
[11]
I. L-Heras, Y. Madrid, C. Cámara, Prospects and difficulties in TiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry Original, Talanta. 124 (2014).
DOI: 10.1016/j.talanta.2014.02.029
Google Scholar
[12]
A. Antonello, G. Soliveri, D. Meroni, G. Cappelletti, S. Ardizzone, Photocatalytic remediation of indoor pollution by transparent TiO2 films, Catal. Today. 230 (2014) 35-40.
DOI: 10.1016/j.cattod.2013.12.033
Google Scholar
[13]
S. Khaoulani, H. Chaker, C. Cadet, E. Bychkov, L. Cherif, A. Bengueddach, S. Fourmentin, Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts Comptes Rendus Chimie. 18-1 (2015) 23-31.
DOI: 10.1016/j.crci.2014.07.004
Google Scholar
[14]
Kunyang Chen, Lizhong Zhu, Kun Yang, Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air, J. Environ. Sci. 32 (2015) 189-195.
DOI: 10.1016/j.jes.2014.10.023
Google Scholar
[15]
N. Pijarn, S. Jeimsirilers, S. Jinawath, Photocatalytic activity of mixed phase TiO2 from microwave-assisted synthesis, Adv. Mater. Res. 664 (2013) 661-666.
DOI: 10.4028/www.scientific.net/amr.664.661
Google Scholar
[16]
JISC, Fine ceramics (advanced ceramics, advanced technical ceramics)-Determination of photocatalytic activity of surfaces in aqueous medium by degradation of methylene blue, ISO TC 206/SC N614, ISO/CD 10678, ISO TC 206/SC WG 37, 2008, pp.1-12.
DOI: 10.3403/30184698u
Google Scholar
[17]
P. Bouguer, E. d'Optique, sur la gradation de la lumiere (Paris, France: Claude Jombert, 1729), p.16.
Google Scholar