Effects of Drying Techniques on the Crystallinity and Thermal Properties of Empty Fruit Bunch Nanocrystalline Cellulose

Article Preview

Abstract:

The effect of drying techniques on the crystallinity and thermal stability nanocrystalline cellulose (NCC) prepared from oil palm empty fruit bunch (OPEFB) via the TEMPO-oxidation process was investigated. NCC was subjected to three separate drying techniques viz. oven drying (OD), freeze drying (FD) and solvent exchange (SE). The crystallinity and thermal properties were investigated for all samples using DSC and X-ray diffraction (XRD). There is no significant difference in the degree of crystallinity for both OD-NCC and FD-NCC as compared to the starting material of unbleached pulp (UP) (72% vs 76%), however SE-NCC showed a tremendous reduction with the crystallinity of only 40%. Both OD-NCC and FD-NCC have almost similar thermal behavior but the SE-NCC showed a significant difference. For the application of NCC in non-polar bionanocomposites, both OD-NCC and FD-NCC is recommended due to its relatively superior thermal stability and a higher crystallinity index.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-24

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.N. Law, W.D. Wanrosli and A. Ghazali: Bioresources Vol. 2 (2007), p.351.

Google Scholar

[2] H. Fukuzumi, T. Saito, Y. Okita and Akira Isogai: Polymer Degradation and Stability Vol. 95 (2010), p.1502.

DOI: 10.1016/j.polymdegradstab.2010.06.015

Google Scholar

[3] M.A. Hubbe, O.J. Rojas, L.A. Lucia and M. Sain: Bioresources Vol. 3 (2008), p.929.

Google Scholar

[4] I. Siro and D. Plackett: Cellulose Vol. 17 (2010), p.459.

Google Scholar

[5] S. Iwamoto, W. Kai, A. Isogai and T. Iwata: Biomacromolecules Vol. 10 (9) (2009), p.2571.

Google Scholar

[6] T. Saito, T. Uematsu, S Kimura, T. Enomae and A. Isogai: Soft Matter Vol. 7 (19) (2011), p.18804.

Google Scholar

[7] J.C. Thimm, D.J. Burrit, W.A. Ducker and L.D. Melton: Planta Vol. 212 (2000), p.25.

Google Scholar

[8] A. Espert, F. Vilaplana and S. Karlsson: Compos Part A Appl Sci Manuf Vol. 35 (11) (2004), p.1267.

Google Scholar

[9] K. Nakamura, T. Hatakeyma, H. Hatakeyma: J Textie Inst Vol. 72 (9) (1981), p.607.

Google Scholar

[10] M. Kouris, H. Ruck and S.G. Mason: Can J Chem Vol. 36 (1958), p.931.

Google Scholar

[11] W.D. Wanrosli, C.P. Leh, Z. Zainuddin and R. Tanaka: Holsforschung Vol. 57 (2003), p.106.

Google Scholar

[12] S. Fujisawa, T. Saito, S. Kimura, T. Iwata and A. Isogai: Biomacromolecules Vol. 14 (5) (2013), p.1541.

Google Scholar

[13] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad: Textile Research Journal Vol. 29 (1959), p.786.

Google Scholar

[14] Q. Wang, J.Y. Zhu and J.M. Considine: ACS Appl Mater Interfaces Vol. 5 (7) (2013), p.2527.

Google Scholar

[15] Q. Li and S. Renneckar: Biomacromolecules Vol. 12 (2011), p.650.

Google Scholar

[16] A. Isogai, M. Usuda, T. Kato, T. Uryu and R.H. Atalla: Macromolecules Vol. 22 (7) (1989), p.3168.

DOI: 10.1021/ma00197a045

Google Scholar

[17] M. Xu, H. Q Dai, X. Sun, S.M. Wang and W.B. Wu: Bioresources Vol. 7 (2) (2012), p.1633.

Google Scholar

[18] E. Indarti, Marwan and W.D. Wanrosli: Journal of Physic.: Conf. Ser. Vol. 622 012025 (2015).

Google Scholar

[19] R. Rohaizu: PhD thesis. School of Technology Industry, Universiti Sains Malaysia (2015).

Google Scholar

[20] X.W. Cao, B. Ding, J. Y, Yu and S.S. Al-Deyab: Carbohydrate polymers Vol. 90 (2) (2012), p.1075.

Google Scholar