Advances and Potentials in Friction Stir Welding of Aluminum Alloys

Article Preview

Abstract:

Within the last decade, Friction Stir Welding (FSW) has increasingly been gaining relevance for joining nonferrous metals, especially aluminum alloys. Possible applications range from the aerospace and automotive sector up to manufacturing electrical components. Compared to conventional fusion welding processes, FSW offers numerous advantages, as it for example does not require shielding gas or filler material. However, FSW is still not applied or taken into account during the product development process in proportion to its potential. This is mainly caused by the lack of data in order to evaluate the process economically and differentiate it to other processes like arc and laser welding, also regarding technological factors. Therefore, this investigation focusses on the possibilities and limits when joining wrought and cast aluminum alloys, like EN AW-6082 T6, EN AW-7075 T651 and AlSi11Mg0,3, respectively, by FSW compared to MIG. The weld quality of the samples is characterized by tensile testing, hardness measurements and microstructure analysis. Furthermore, an approach to reduce the process forces by using FSW tools with reduced diameters and respectively adjusted process parameters is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Broetje Automation, EADS licenses its patented DeltaN friction-stir welding technology to BRÖTJE-Automation, http: /www. broetje-automation. de, (2012).

Google Scholar

[2] A. von Strombeck, Rührreibschweißen von Hohlkammerprofilen, Lightweight Design 6, (2013) 44-47.

DOI: 10.1365/s35725-013-0222-8

Google Scholar

[3] Information on https: /www. apple. com/imac/design.

Google Scholar

[4] S. Hollunder, Lebensdauerabschätzung rührreibgeschweißter Aluminiumkonstruktionen; Clausthal-Zellerfeld, (2009).

Google Scholar

[5] M. Pedemonte, C. Gambaro, E. Lertora, C. Mandolfino, Fatigue assessment of AA 8090 friction stir butt welds after surface finishing treatment, Aerospace Science and Technology 27 (2013) 188-192.

DOI: 10.1016/j.ast.2012.08.006

Google Scholar

[6] S. Sheikhi, Herstellung und Bewertung der Umformbarkeit von reibrührgeschweißten Tailored Blanks aus Aluminiumlegierungen, GKSS Forschungszentrum Geesthacht GmbH, (2010).

Google Scholar

[7] E. Lertora, C. Gambaro, C. Mandolfino, M. Pedemonte, Friction stir welding between extrusions and laminates, Welding International 29, (2015) 117-123.

DOI: 10.1080/09507116.2012.753309

Google Scholar

[8] K. Anganan, J.G. Murali, M.M. Krishnan, K. Marimuthu, Study of Mechanical Properties and Experimental Comparison of Mig and Friction Stir Welding Processes for aa6082-t6 Aluminium alloy, IEEE 8th Proceedings International Conference on Intelligent Systems and Control (2014).

DOI: 10.1109/isco.2014.7103922

Google Scholar

[9] C. Breivik, Mechanical Properties of Gas Metal Arc and Friction Stir AA6082-T6 Weldments, Norwegian University of Science and Technology, Trondheim, (2013).

Google Scholar

[10] H.K. Mohammed, A comparative study between friction stir welding and metal inert gas welding of 2024-t4 aluminum alloy, ARPN Journal of Engineering and Applied Sciences 6 (2011), 36-40.

Google Scholar

[11] M.K. Kulekci, E. Kaluç, A. Şık, O. Basturk, Experimental comparison of MIG and Friction Stir Welding processes for EN AW-6061-T6 (Al Mg1 Si Cu) aluminum alloy, The Arabian Journal for Science and Engineering 35 (2010) 321-330.

Google Scholar

[12] J. Mononen, M. Sirén, H. Hänninen, Cost comparison of FSW and MIG welded aluminium panels, Welding in the World, Vol. 47 (2003) 32-35.

DOI: 10.1007/bf03266406

Google Scholar

[13] Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly 51 (2012) 250-261.

DOI: 10.1179/1879139512y.0000000015

Google Scholar

[14] S. Hirasawa, H. Badarinarayan, K. Okamoto, T. Tomimura, T. Kawanami, Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method, Journal of Materials Processing Technology 11 (2010) 1455-1463.

DOI: 10.1016/j.jmatprotec.2010.04.003

Google Scholar

[15] A. Arora, T. DebRoy, Toward optimum friction stir welding tool shoulder diameter, Scripta Materialia 64 (2011) 9–12.

DOI: 10.1016/j.scriptamat.2010.08.052

Google Scholar

[16] R. Kumar, K. Singh, S. Pandey, Process forces and heat input as function of process parameters in AA5083 friction stir welds, Transactions of Nonferrous Metals Society of China 22 (2012) 288-298.

DOI: 10.1016/s1003-6326(11)61173-4

Google Scholar

[17] C.D. Sorensen, A.L. Stahl, Experimental Measurements of Load Distributions on Friction Stir Weld Pin Tools, Metallurgical and Materials Transactions B 38 (2007) 451-459.

DOI: 10.1007/s11663-007-9041-6

Google Scholar