On the Investigation of the Portevin-Le Chatelier Effect in the Rolling of AA 5083

Article Preview

Abstract:

The aim of this paper is to investigate about the Portevin-Le Chatelier Effect (PLC) on a AA 5083 sheet. In order to study the minimizing of the PLC effect, three different rolling cyles have been carried out and an experimental campaign on the three different AA 5083 rolled has been carried out. In particular, the experimental campaign, to better understand the evolution of the phenomena during the rolling process, is based on: microstructural analysis, tensile tests and fractographic observations. Finally it has been found that the greater grain size the smaller the PLC effect, even if this effect cannot be totally removed, furthermore the PLC effect occurs only in the rolling direction. The best rolling cycle is the one that provide a hot rolling until 4mm, then a cold rolling up to 2mm and a final heat treatment of annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-180

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy, K. Venkateswarlu, Effect of cryorolling on the mechanical properties of AA5083 alloy and the Portevin–Le Chatelier phenomenon, Materials and Design 67 (2015).

DOI: 10.1016/j.matdes.2014.11.022

Google Scholar

[2] Raynaud GM, Gomiero Ph. Proc. Alumitech '97. Atlanta; May 20–23 1997, p.353–66.

Google Scholar

[3] Kaibyshev R, Musin F, Leseur DR, Nieh TG, et al. Microstructure and processing. Mater Sci Eng, A 2003; A342: 169–77.

Google Scholar

[4] Gubicza J, Chinh NQ, Horita Z, Langdon TG, et al. The effect of Mg addition on microstructure and mechanical properties of aluminium. Mater Sci Eng, A 2004; 387–389: 55–9.

DOI: 10.1016/j.msea.2004.03.076

Google Scholar

[5] J. Coëra, P.Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes, Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear, Mechanics Research Communications 48 (2013) 1–7.

DOI: 10.1016/j.mechrescom.2012.11.008

Google Scholar

[6] Codes, R.N., Hopperstad, O.S., Engler, O., Lademo, O. -G., Embury, J.D., Benallal, A., 2011. Spatial and temporal characteristics of propagating deformation bands in AA5182 alloy at room temperature. Metallurgical and Materials Transactions A 42 (11), 3358–3369.

DOI: 10.1007/s11661-011-0749-1

Google Scholar

[7] Zhenyu Jiang, Qingchuan Zhang, Huifeng Jiang, Zhongjia Chen, Xiaoping Wu, Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-4 at%Cu polycrystals, Materials Science and Engineering A 403 (2005) 154–164.

DOI: 10.1016/j.msea.2005.05.059

Google Scholar

[8] Huifeng Jiang, Qingchuan Zhang, Xiaoping Wu, Jinghong Fan, Spatiotemporal aspects of the Portevin–Le Chatelier effect in annealed and solution-treated aluminum alloys, Scripta Materialia 54 (2006) 2041–(2045).

DOI: 10.1016/j.scriptamat.2006.03.027

Google Scholar

[9] M. Abbadi, P. Hahner , A. Zeghloul, On the characteristics of Portevin/Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing, Materials Science and Engineering A337 (2002) 194/201.

DOI: 10.1016/s0921-5093(02)00036-9

Google Scholar

[10] Sun Liang, Zhang Qing-Chuan, and Cao Peng-Tao, Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys, 2009 Chinese Phys. B 18 3500 (http: /iopscience. iop. org/1674-1056/18/8/061).

DOI: 10.1088/1674-1056/18/8/061

Google Scholar

[11] Herdawandi Halim, David S. Wilkinson, Marek Niewczas, The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Materialia 55 (2007) 4151–4160.

DOI: 10.1016/j.actamat.2007.03.007

Google Scholar

[12] A. Astarita, A. Squillace and L. Carrino - Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets - J. of Materi Eng and Perform 2014 DOI 10. 1007/s11665-014-1140-3.

DOI: 10.1007/s11665-014-1140-3

Google Scholar

[13] Carlone, P. , Gaetano, S., Longitudinal residual stress analysis in AA2024-T3 Friction Stir Welding, Open Mechanical Engineering Journal Volume 7, Issue 1, 2013, pp.18-26.

DOI: 10.2174/1874155x01307010018

Google Scholar

[14] Carlone, P., Palazzo, G.S., Experimental analysis of the influence of process parameters on residual stress in AA2024-T3 friction stir welds  Key Engineering Materials, Volume 504-506, 2012, Pages 753-758.

DOI: 10.4028/www.scientific.net/kem.504-506.753

Google Scholar

[15] Paulo, R.M.F., Carlone, P., Valente, R.A.F., Teixeira-Dias, F., Palazzo, G.S., Influence of friction stir welding residual stresses on the compressive strength of aluminium alloy plates, Thin-Walled Structures, Volume 74, 2014, pp.184-190.

DOI: 10.1016/j.tws.2013.09.012

Google Scholar