[1]
De Matteis G. Effect of lightweight cladding panels on the seismic performance of moment resisting steel frames, Engineering Structures, Vol 27, Issue 11 (2005) pp.1662-167.
DOI: 10.1016/j.engstruct.2005.06.004
Google Scholar
[2]
De Matteis, G., Mazzolani, F.M., Panico, S. Experimental tests on pure aluminium shear panels with welded stiffeners, Engineering Structures, 30, 6 (2008), pp.1734-44.
DOI: 10.1016/j.engstruct.2007.11.015
Google Scholar
[3]
De Matteis, G., Formisano, A., Mazzolani, F.M. An innovative methodology for seismic retrofitting of existing RC buildings by metal shear panels. Earthquake Engineering and Structural Dynamics 38, 1 (2009), pp.61-78.
DOI: 10.1002/eqe.841
Google Scholar
[4]
De Matteis G., Brando G., Panico S., Mazzolani F.M. Bracing type pure aluminium stiffened shear panels: An experimental study. Advanced Steel Construction, 5, 2, (2009) pp.106-119.
DOI: 10.4203/ccp.86.144
Google Scholar
[5]
Brando, G., De Matteis, G. Design of low strength-high hardening metal multi-stiffened shear plates. Engineering Structures 60 (2014) PP. 2 - 10 doi: 10. 1016/j. engstruct. 2013. 12. 005.
DOI: 10.1016/j.engstruct.2013.12.005
Google Scholar
[6]
Brando, G., D'Agostino, F., De Matteis, G. Experimental tests of a new hysteretic damper made of buckling inhibited shear panels. Materials and Structures/Materiaux et Constructions 46, 12, (2013) PP. 2121 – 2133. doi: 10. 1617/s11527-013-0040-6.
DOI: 10.1617/s11527-013-0040-6
Google Scholar
[7]
Zirakian, T., Zhang, J. Structural performance of unstiffened low yield point steel plate shear walls. Journal of Constructional Steel Research, 112 (2015), pp.40-53.
DOI: 10.1016/j.jcsr.2015.04.023
Google Scholar
[8]
Valizadeh, H., Sheidaii, M., Showkati, H. Experimental investigation on cyclic behavior of perforated steel plate shear walls. Journal of Constructional Steel Research, 70 (2012), pp.308-316.
DOI: 10.1016/j.jcsr.2011.09.016
Google Scholar
[9]
Chan, R.W.K., Albermani, F., Kitipornchai, S. Experimental study of perforated yielding shear panel device for passive energy dissipation (2013) Journal of Constructional Steel Research, 91, pp.14-25.
DOI: 10.1016/j.jcsr.2013.08.013
Google Scholar
[10]
Vian, D., Bruneau, M., Purba, R. Special perforated steel plate shear walls with reduced beam section anchor beams. II: Analysis and design recommendations (2009) Journal of Structural Engineering, 135 (3), pp.221-228.
DOI: 10.1061/(asce)0733-9445(2009)135:3(221)
Google Scholar
[11]
Formisano A., Lombardi L. Numerical prediction of the non-linear behaviour of perforated metal shear panels. Cogent Engineering. Volume 3, Issue 1, (2016).
DOI: 10.1080/23311916.2016.1156279
Google Scholar
[12]
De Matteis, G., Sarracco, G., Brando, G. Experimental tests and optimization rules for steel perforated shear panels. Journal of Constructional Steel Research (2016), 123, pp.41-52.
DOI: 10.1016/j.jcsr.2016.04.025
Google Scholar
[13]
De Matteis G., Brando G., Mazzolani F.M. Pure aluminium: An innovative material for structural applications in seismic engineering. Construction and Building Materials, 26-1 (2012), pp.677-686.
DOI: 10.1016/j.conbuildmat.2011.06.071
Google Scholar
[15]
Brando G., De Matteis G. Experimental and numerical analysis of a multi-stiffened pure aluminium shear panel. Thin-Walled Structures, 49, 10 (2011). pp.1277-1287.
DOI: 10.1016/j.tws.2011.05.007
Google Scholar
[16]
ECCS-CECM. Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads, (1985).
Google Scholar