Hydrothermal Surface Treatments with Cerium and Glycol Molecules on the AA 2024-T3 Clad Alloy

Article Preview

Abstract:

New treatments for replacement of chromate require lower toxicity and corrosion protection. This study aims to investigate the influence of the combination of a Ce conversion coating (CCCe) with glycol molecules on the corrosion resistance of the AA2024-T3 clad (AA1230). The corrosion resistance of surface treated and untreated samples was evaluated by electrochemical techniques (electrochemical impedance spectroscopy, polarization tests and open circuit potential). These tests were complemented by salt spray tests to accelerate the corrosive effects of weathering. The surfaces were analyzed after corrosion tests by scanning electron microscopy with X-ray energy dispersive detector (SEM - EDX). The results of the CCCe samples in combination with glycol were compared with that of the surface with chromate layer and the results showed that the CCCe treatment is a candidate for replacement of chromating with the advantage that it does not generate toxic residues. The self-healing capacity of the new treatment tested was indicated by the increased formation of corrosion products deposition on top of Fe rich intermetallis in the AA1230 clad with time of exposure to the electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-221

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S. Frankel, R.L. McCreery, Inhibition of Al alloy corrosion by chromates, The Electrochem. Soc. Interface. 10 (2001) 34-38.

DOI: 10.1149/2.f06014if

Google Scholar

[2] P. Campestrini, S. Böhm, T. Scram, H. Terryn, J.H.W. de Wit, Study of the formation of chromate conversion coatings on Alclad 2024 aluminum alloy using spectroscopic ellipsometry, Thin Solid Film. 410 (2002) 76-85.

DOI: 10.1016/s0040-6090(02)00253-5

Google Scholar

[3] W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor, Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for pre-treatment of galvanised steel substrates, Prog. Org. Coat. 54 (2005) 276-284.

DOI: 10.1016/j.porgcoat.2005.07.006

Google Scholar

[4] A.R. Mendoza, . F Corvo, Outdoor and indoor atmospheric corrosion of non-ferrous metals, Corr. Sci. 42 (2000) 1123-1147.

DOI: 10.1016/s0010-938x(99)00135-3

Google Scholar

[5] W. Funke, The role of adhesion in corrosion protection by organic coatings, Jour. Oil Col. Chem. Ass. 68 (1985) 229-232.

Google Scholar

[6] R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, J.F. Watts, Corrosion behaviour of a 2219 aluminium alloy treated with a chromate conversion coating exposed to a 3. 5% NaCl solution, Corr. Sci. 53 (2011) 1214-1223.

DOI: 10.1016/j.corsci.2010.12.006

Google Scholar

[7] A.M. Pereira, G. Pimenta, B.D. Dunn, A Comparison of Alodine 1200 with chromium-free conversion coatings, ESA STM-276 (2008) 1-61.

Google Scholar

[8] V. Gentil, Corrosão, Liv. Téc. e Cie. Editora, RJ, (1996).

Google Scholar

[9] L.E.M. Palomino, P.H. Suegama, I.V. Aoki, M.F. Montemor, H.G. Melo, Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3, Corr. Sci. 50 (2008) 1258-1266.

DOI: 10.1016/j.corsci.2008.01.018

Google Scholar

[10] F.M. Reis, H.G. de Melo, I. Costa, EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer, Electrochem. Acta, 51 (2006) 1780-1788.

DOI: 10.1016/j.electacta.2005.02.118

Google Scholar

[11] W.A.S. Izaltino, S.L. Assis, S. de Souza, D.S. Yoshikawa, I. Costa, Self assembling molecules as corrosion inhibitors for the 1050 aluminium alloy, EUROCORR (2009), France.

DOI: 10.1016/j.surfcoat.2010.03.021

Google Scholar

[12] S. de Souza, D.S. Yoshikawa, S.L. Assis, W.A.S. Izaltino, I. Costa, Efeito de moléculas auto-organizáveis na resistência à corrosão da liga AA2024-T3, Tec. Met. Mat. Min. 6 (2010) 130-135.

DOI: 10.4322/tmm.00603002

Google Scholar

[13] S. de Souza, D.S. Yoshikawa, W.A.S. Izaltino, S.L. Assis, I. Costa, Self-assembling molecules as corrosion inhibitors for 1050 aluminum, Surf. Coat. Tech. 204 (2010) 3238-3242.

DOI: 10.1016/j.surfcoat.2010.03.021

Google Scholar

[14] R.S. Alwitt, The aluminum water system. Ed. JW Diggle, New York, 1972, 169-254.

Google Scholar

[15] A. Baltat-Bazia, N. Celati, M. Keddam, H. Takenouti, R. Wiart, Electrochemical impedance spectroscopy and electron microscopies applied to the structure of anodic oxide layers on pure aluminium, Material Sci. Forum, 111 (1992) 359-368.

DOI: 10.4028/www.scientific.net/msf.111-112.359

Google Scholar

[16] B.R.W. Hinton, D.R. Arnot, N.E. Ryan, Cerium conversion coatings for the corrosion protection of aluminum, Met. Forum. 9 (1986) 162-173.

Google Scholar

[17] R.G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, Active corrosion protection in Ce-modified hydrotalcite conversion coatings. Corrosion. 58 (2002) 3-14.

DOI: 10.5006/1.3277303

Google Scholar

[18] A. Decroly, J.P. Petitjean, Study of the deposition of cerium oxide by conversion on to aluminum alloys, Surf. Coat. Tech. 194 (2005) 1-9.

Google Scholar

[19] L.E.M. Palomino, P.H. Suegama, I.V. Aoki, Z. Pászti, H.G. de Melo, Investigation of the corrosion behaviour of a bilayer cerium silane pre-treatment on Al 2024- T3 in 0. 1 M NaCI, Electrochemical Acta 52 (2007) 7496-7505.

DOI: 10.1016/j.electacta.2007.03.002

Google Scholar

[20] F.M. Seon, Rare-earths for materials corrosion protection, Jour. Less Comm. Met. 148 (1989) 73-78.

Google Scholar

[21] Q.Z. Li, Y. Zuo, J.M. Zhao, Y.M. Tang, X.H. Zhao, J.P. Xiong, Corrosion behaviors of Ce- and Nd-modified anodic films on aluminum, Anti-Corr. Meth. Mat. 57 (2010) 238-243.

DOI: 10.1108/00035591011075878

Google Scholar

[22] N.C. Rosero-Navarro, S.A. Pellice, A. Durán, S Ceré, M . Aparicio, Corrosion protection of aluminium alloy AA2024 with cerium doped methacrylate-silica coatings, Jour. Sol-Gel Sci. Tech. 52 (2010) 31-34.

DOI: 10.1007/s10971-009-2010-6

Google Scholar

[23] S.J. Hinder, R. Grilli, R. Rustame, W.I.A. Santos, M.A. Baker, I. Costa, A surface analytical investigation of cerium-based conversion coatings deposited onto an AA2024-T3 aluminium alloy cladding layer, Surf. Int. Analy. 46, (2014) 735-739.

DOI: 10.1002/sia.5440

Google Scholar