Effect of Experimental Parameters on Passivation Phenomena of Ti6Al4V Alloy in Acid Solution

Article Preview

Abstract:

This paper study the effect of scan rates and imposed potential on the growth of the oxide film on the Ti6Al4V alloy surface in acid solution .Polarization curves, plotted at different scan rates show a large range of passivation, with no occurrence of transpassivation . It was found that the scan rate have not a significant effect on the passivation phenomenon. However, it influences the corrosion potential and the current density. Electrochemical impedance spectroscopy results show that the system behaviour is purely capacitive. The increasing trend in transfer resistance, film thickness and the exponent n with the imposed potential is due to the growth of a passive and compact oxide film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-209

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Zhang , C. Wang , W. Liu, Characterization and tribological investigation of sol–gel ceramic films on Ti–6Al–4V, Wear 260 (2006) 379–386.

DOI: 10.1016/j.wear.2005.05.006

Google Scholar

[2] Z. Cai, T. Shafer, I. Watanabe, M. E. Nunn, T. Okabe, Electrochemical characterization of cast titanium alloys, Biomaterials 24 (2003) 213-218.

DOI: 10.1016/s0142-9612(02)00293-4

Google Scholar

[3] I. Gurappa, Characterization of different materials for corrosion résistance under simulated body fluid conditions, Materials Characterization 49 (2002) 73-79.

DOI: 10.1016/s1044-5803(02)00320-0

Google Scholar

[4] H.H. Huang, T.H. Lee, Electrochemical impedance spectroscopy study Of Ti–6Al–4V alloy in artificial saliva with fluoride and/or bovine albumin, Dental Materials 21 (2005) 749–755.

DOI: 10.1016/j.dental.2005.01.009

Google Scholar

[5] R.W. Wei Hsu, C.C. Yang, C.A. Huang, Y.S. Chen, Electrochemical corrosion properties of Ti–6Al–4V implant alloy in the biological environment, Materials Science and Engineering A 380 (2004)100–109.

DOI: 10.1016/j.msea.2004.03.069

Google Scholar

[6] C.E.B. Marino, L.H. Mascaro, E.I.S. characterization of a Ti-dental implant in artificial saliva media- Dissolution process of the oxide barrier, Journal of Electroanalytical Chemistry 568 (2004) 115–120.

DOI: 10.1016/j.jelechem.2004.01.011

Google Scholar

[7] I. Gurrappa, D.V. Reddy, Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions, Journal of Alloys and Compounds 390 (2005) 270–274.

DOI: 10.1016/j.jallcom.2004.08.040

Google Scholar

[8] Y.Z. Huang, D.J. Blackwood, Characterisation of titanium oxide film grown in 0. 9% NaCl at different sweep rates , Electrochimica Acta 51 (2005) 1099–1107.

DOI: 10.1016/j.electacta.2005.05.051

Google Scholar

[9] M.M. Khaled, B.S. Yilbas, I.Y. Al-Qaradawi, P.G. Coleman, D. Abdulmalik, Z.S. Seddigi, A. Abulkibash, B.F. Abu-Sharkh, M.M. Emad, Corrosion properties of duplex treated Ti–6Al–4V alloy in chloride media using electrochemical and positron annihilation spectroscopy techniques, Surface & Coatings Technology 201 (2006).

DOI: 10.1016/j.surfcoat.2006.01.019

Google Scholar

[10] Y. Khelfaoui, M. Kerkar, A. Bali, F. Dalard, Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel, Surface & Coatings Technology 200 (2006) 4523–4529.

DOI: 10.1016/j.surfcoat.2005.03.043

Google Scholar

[11] K. Habib, Laser optical interferometry as NDT methods for cleaner and sustainable desalination plants pitting and crevice corrosion, Dessalination 166 (2004) 171-190.

DOI: 10.1016/j.desal.2004.06.072

Google Scholar

[12] M. Li, S. Luo, P. Wu, J. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions, Electrochimica Acta 50 (2005) 3401–3406.

DOI: 10.1016/j.electacta.2004.12.031

Google Scholar

[13] C. Monticelli, A. Frignani, A. Bellosi, G. Brunoro, G. Trabanelli, The corrosion behaviour of titanium diboride in neutral chloride solution, Corrosion Science 43 (2001) 979-992.

DOI: 10.1016/s0010-938x(00)00120-7

Google Scholar

[14] E. Almeida, M.R. Costa, N.D. Cristofaro, N. Mora, R. Catala, J.M. Puente, J.M. Bastidas, Titanium passivated lacquered tinplate cans in contact with foods, Corrosion Engineering, Science and Technology 40 (2005) 2.

DOI: 10.1179/174327805x29859

Google Scholar

[15] R. M. Souto, M. M. Laz, R. L. Reis, Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated y electrochemical impedance spectroscopy, Biomaterials 24 (2003) 4213–4221.

DOI: 10.1016/s0142-9612(03)00362-4

Google Scholar

[16] C.M. Lin, S.K. Yen, Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid, Materials Science and Engineering C 26 (2006) 54-64.

DOI: 10.1016/j.msec.2005.06.048

Google Scholar

[17] B.S. Ng, I. Annergren, A.M. Soutar, K.A. Khor, A.E.W. Jarfors, Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement, Biomaterials 26 (2005) 1087–1095.

DOI: 10.1016/j.biomaterials.2004.04.022

Google Scholar

[18] C. Jaeggi, P. Kern, J. Michler, T. Zehnder, H. Siegenthaler, Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices, Surface & Coatings Technology 200 (2005) 1913-(1919).

DOI: 10.1016/j.surfcoat.2005.08.021

Google Scholar

[19] K. Azumi, N. Yasui, M. Seo, Changes in the properties of anodic oxide films formed on titanium during long-term immersion in desaerated neutral solutions, Corrosion Science 42 (2000) 885-896.

DOI: 10.1016/s0010-938x(99)00096-7

Google Scholar

[20] J.P. Gueneau de Mussy, J.V. Macpherson, J.L. Delplancke, Characterisation and behaviour of Ti/TiO2/noble metal anodes, Electrochimica Acta 48 (2003) 1131-1141.

DOI: 10.1016/s0013-4686(02)00824-1

Google Scholar

[21] W. Zhang, C. Wang, W. Liu, Characterization and tribological investigation of sol–gel ceramic films on Ti–6Al–4V, Wear 260 (2006)379–386.

DOI: 10.1016/j.wear.2005.05.006

Google Scholar

[22] N.T.C. Oliveira, E.A. Ferreira, L.T. Duarte, S.R. Biaggio, R.C. R. Filho, N. Bocchi, Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys, Electrochimica Acta 51 (2006) 2068-(2075).

DOI: 10.1016/j.electacta.2005.07.015

Google Scholar

[23] A.W.E. Hodgson, Y. Mueller, D. Forster, S. Virtanen, Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions, Electrochimica Acta 47 (2002) 1913-(1923).

DOI: 10.1016/s0013-4686(02)00029-4

Google Scholar

[24] M. Karthega, V. Raman, N. Rajendran, Influence of potential on the electrochemical behaviour of β titanium alloys in Hank's solution, Acta Biomaterialia 3 (2007) 1019-1023.

DOI: 10.1016/j.actbio.2007.02.009

Google Scholar

[25] A.K. Shukla, R. Balasubramaniam, S. Bhargava, Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13. 4Al–29Nb alloys in simulated human body conditions, Intermetallics 13 (2005) 631–637.

DOI: 10.1016/j.intermet.2004.10.001

Google Scholar

[26] D.J. Blackwood, S.K.M. Chooi, Stability of protective oxide films formed on a porous titanium, Corrosion Science 44 (2002) 395–405.

DOI: 10.1016/s0010-938x(01)00080-4

Google Scholar

[27] E. P. Abellan, L. R. Sousa, W.D. Muller, A.C. Guastaldi, Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution, Corrosion Science 49 (2007) 1645–1655.

DOI: 10.1016/j.corsci.2006.08.010

Google Scholar

[28] S. Virtanen , I. Milosev , E. Gomez-Barrena , R. Trebse , J. Salo , Y.T. Konttinen, Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomaterialia 4 (2008) 468–476.

DOI: 10.1016/j.actbio.2007.12.003

Google Scholar

[29] E. Nouicer, F- Zohra. Benlahreche, L. Yahia, M. Eutamene , H. Chadli, Effect of scan rates and imposed potentials on the formation and growth of oxide film on Ti6Al4V alloy surface in 3% NaCl, Revue de Métallurgie 108 (2011) 69-74.

DOI: 10.1051/metal/2011021

Google Scholar