[1]
N. Banthia, V. Bindiganavile, S. Mindess, Impact resistance of fiber reinforced: a progress report, in: A.E. Naaman, H.W. Reinhardt, High performance fiber reinforced cement composites (HPFRCC4), RILEM Proceedings PRO 30, Bagneux, 2003, pp.117-131.
DOI: 10.51202/9783816793977-3
Google Scholar
[2]
A.M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineerin, Compos Struct. 86 (2008) 3–9.
DOI: 10.1016/j.compstruct.2008.03.006
Google Scholar
[3]
T.K. Tran, D.J. Kim, Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates, Cement and Concrete Research, 50 (2013) 62-73.
DOI: 10.1016/j.cemconres.2013.03.018
Google Scholar
[4]
A.E. Naaman, Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites, Journal of Advanced Concrete Technology. 1(2003) 241-252.
DOI: 10.3151/jact.1.241
Google Scholar
[5]
Z. Rong, W. Sun, Y. Zhang, Dynamic compression behavior of ultra-high performance cement based composites, International Journal of Impact Engineering. 37 (2010) 515-520.
DOI: 10.1016/j.ijimpeng.2009.11.005
Google Scholar
[6]
Z.L. Wang, Y.S. Liu, R.F. Shen, Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression, Construction and Building Materials. 22 (2008) 811-819.
DOI: 10.1016/j.conbuildmat.2007.01.005
Google Scholar
[7]
S. Wang, M-H. Zhang, S.T. Quek, Mechanical behavior of fiber-reinforced high-strength concrete subjected, Construction and Building Materials. 31 (2012) 1-11.
DOI: 10.1016/j.conbuildmat.2011.12.083
Google Scholar
[8]
J. Lai, W. Sun, Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite, Cement and Concrete Research. 39 (2009) 1044-1051.
DOI: 10.1016/j.cemconres.2009.07.012
Google Scholar
[9]
Y. Ju, H.B. Liu, G.H. Sheng, H.J. Wang, Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts, SCIENCE CHINA Technological Sciences. 53 (2010) 2435-2449.
DOI: 10.1007/s11431-010-4061-x
Google Scholar
[10]
M. Pająk, T. Ponikiewski, The laboratory investigation on the influence of the polypropylene fibers on selected mechanical properties of hardened self-compacting concrete, Architecture Civil Engineering Environment. 3 (2015) 69-78.
Google Scholar
[11]
T. Kühn, Ch. Steinke, Z. Sile, I. Zreid, M. Kaliske, M. Curbach, Dynamische Eigenschaften von Beton im Experiment und in der Simulation, Beton-und Stahlbetonbau 111 (2016) 41-50.
DOI: 10.1002/best.201500053
Google Scholar
[12]
T.S. Lok, P.J. Zhao, Impact Response of Steel Fiber-Reinforced Concrete Using a Split Hopkinson Pressure Bar, Journal of Materials in Civil Engineering. 16 (2004) 54-59.
DOI: 10.1061/(asce)0899-1561(2004)16:1(54)
Google Scholar
[13]
Z. Xu, H. Hao, H.N. Li, Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres, Materials and Design. 33 (2012) 42–55.
DOI: 10.1016/j.matdes.2011.07.004
Google Scholar
[14]
P. Bischoff, S. Perry, Compressive behavior of concrete at high strain rates, Materials and Structures. 24 (1991) 425–450.
DOI: 10.1007/bf02472016
Google Scholar
[15]
C. Jiao, W. Sun, Impact Resistance of Reactive Powder Concrete, Journal of Wuhan University of Technology-Mater. Sci. Ed. 30 (2015) 752-757.
DOI: 10.1007/s11595-015-1223-5
Google Scholar
[16]
M. Pająk, The influence of the strain rate on the strength of concrete taking into account the experimental techniques, Architecture Civil Engineering Environment. 3 (2011) 77-86.
Google Scholar
[17]
E.D. Davies, S.C. Hunter, The dynamic compression testing of solids by the method of the split Hopkinson pressure bar, J Mech Phys Solids. 11 (1963) 155–179.
DOI: 10.1016/0022-5096(63)90050-4
Google Scholar
[18]
F. Dai, S. Huang, K. Xia, Y. Tan, Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar, Rock Mech Rock Eng 43 (2010) 657–666.
DOI: 10.1007/s00603-010-0091-8
Google Scholar
[19]
Q.M. Li, H. Meng, About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test, International Journal of Solids and Structures. 40 (2003) 343–360.
DOI: 10.1016/s0020-7683(02)00526-7
Google Scholar
[20]
Q.M. Li, Z.B. Lu, H. Meng, Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: Numerical simulations, International Journal of Impact Engineering. 36 (2009).
DOI: 10.1016/j.ijimpeng.2009.04.010
Google Scholar
[21]
D.J. Frew, M.J. Forrestal, W. Chen, Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar, Experimental Mechanics. 42 (2002) 93-106.
DOI: 10.1007/bf02411056
Google Scholar