[1]
Kanda T, Lin Z, Li VC, Tensile stress–strain modeling of pseudo strain-hardening cementitious composite, J Mater Civil Eng, ASCE (2000) 147-156.
DOI: 10.1061/(asce)0899-1561(2000)12:2(147)
Google Scholar
[2]
Ahmed SFU, Maalej M, Paramasivam P, Strain-hardening behavior of hybrid fiber reinforced cement composites, J Ferrocement (2003) 172-182.
Google Scholar
[3]
Li VC, Wu HC, Maalej M, et al, Tensile behavior of engineered cementitious composites with discontinuous random steel fibers, J Am Ceram Soc (1996) 74-78.
Google Scholar
[4]
Maalej M, Hashida T, Li VC, Effect of fiber volume fraction on the off-crack-plane fracture energy in strain-hardening engineered cementitious composites, J Am Ceram Soc (1995) 3369-3375.
DOI: 10.1111/j.1151-2916.1995.tb07979.x
Google Scholar
[5]
Tjiptobroto P, Hansen W, Tensile strain-hardening and multiple cracking in high performance cement based composites containing discontinuous fibers, ACI Mater J (1993) 16-25.
DOI: 10.14359/4031
Google Scholar
[6]
Kanda T, Li VC, New micromechanics design theory for pseudostrain hardening cementitious composite, J Eng Mech, ASCE (1999) 373-381.
DOI: 10.1061/(asce)0733-9399(1999)125:4(373)
Google Scholar
[7]
Banthia N, Nandakumar N, Crack growth resistance of hybrid fiber reinforced cement composites, Cement Concrete Compos (2003) 3-9.
DOI: 10.1016/s0958-9465(01)00043-9
Google Scholar
[8]
Li VC, Wang S, Wu C, Tensile strain hardening behavior of polyvinyl alcohol engineered cementitious composites (PVA-ECC), ACI Mater J (2001) 483-492.
DOI: 10.14359/10851
Google Scholar
[9]
Yao W, Li J, Wu K, Mechanical properties of hybrid fiber reinforced concrete at low fiber volume fraction, Cement Concrete Res (2003) 27-30.
DOI: 10.1016/s0008-8846(02)00913-4
Google Scholar
[10]
Nehdi M, Ladanchuk JD, Fiber synergy in fiber reinforced selfconsolidating concrete. ACI Mater J (2004) 508-517.
Google Scholar
[11]
Banthia N, Soleimani SM, Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater J (2005) 382-389.
Google Scholar
[12]
Banthia N, Gupta R, Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices. Mater struct (2004 ) 707-716.
DOI: 10.1617/14095
Google Scholar
[13]
Qian CX, Stroeven P, Development of hybrid polypropylene-steel fiber reinforced concrete, Cement Concrete Res (2000) 63-69.
DOI: 10.1016/s0008-8846(99)00202-1
Google Scholar
[14]
Peled A, Cyr MF, Shah SP, High content of fly ash (class F) in extruded cementitious composites, ACI Mater J (2000) 509-517.
DOI: 10.14359/9283
Google Scholar
[15]
Poppe AM, De Schutter G, Cement hydration in the presence of high filler contents, Cem Concr Res (2005) 2290-2299.
DOI: 10.1016/j.cemconres.2005.03.008
Google Scholar
[16]
Tsivilis S, Batis G, Chaniotakis E, et al, Properties and behavior of limestone cement concrete and mortar, Cem Concr Res (2000) 1679-1683.
DOI: 10.1016/s0008-8846(00)00372-0
Google Scholar
[17]
Lothenbach B, Le Saout G, Gallucci E, et al, Influence of limestone on the hydration of Portland cements, Cem Concr Res (2008) 848-860.
DOI: 10.1016/j.cemconres.2008.01.002
Google Scholar
[18]
Matschei T, Lothenbach B, Glasser F P, The role of calcium carbonate in cement hydration, Cem. Concr Res (2007) 551-558.
DOI: 10.1016/j.cemconres.2006.10.013
Google Scholar
[19]
Ranade R, Stults M D, Li VC, Rushing, et al, Micromechanics of high-strength, high-ductility concrete, ACI Mater J (2013) 375-384.
Google Scholar
[20]
Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks. JSCE, Tokyo, Japan (2008) 1-16.
Google Scholar
[21]
Kanda T, Li VC. Interface property and apparent strength of highstrength hydrophilic fiber in cement matrix. J Eng Mech, ASCE (1998) 5-13.
Google Scholar