[1]
Y. Ohama, K. Demura, H. Nagao, T. Ogi, Adhesion of Polymer-Modified Mortars to Ordinary Cement Mortar by Different Test Methods, in: H.R. Sasse (Ed. ), Adhes. between Polym. Concr. / Adhésion Entre Polymères Bét., Springer US, Boston, MA, 1986: p.719.
DOI: 10.1007/978-1-4899-3454-3_67
Google Scholar
[2]
J.E. Isenburg, J.W. Vanderhoff, Hypothesis for Reinforcement of Portland Cement by Polymer Latexes, J. Am. Ceram. Soc. 57 (1974) 242–245.
DOI: 10.1111/j.1151-2916.1974.tb10878.x
Google Scholar
[3]
F. A. Shaker, A. S. El-Dieb, M.M. Reda, Durability of Styrene-Butadiene latex modified concrete, Cem. Concr. Res. 27 (1997) 711–720.
DOI: 10.1016/s0008-8846(97)00055-0
Google Scholar
[4]
Z. Yang, X. Shi, A.T. Creighton, M.M. Peterson, Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar, Constr. Build. Mater. 23 (2009) 2283–2290.
DOI: 10.1016/j.conbuildmat.2008.11.011
Google Scholar
[5]
Q. Zhang, V.C. Li, Adhesive bonding of fire-resistive engineered cementitious composites (ECC) to steel, Constr. Build. Mater. 64 (2014) 431–439.
DOI: 10.1016/j.conbuildmat.2014.04.059
Google Scholar
[6]
M. Nakayama, J.J. Beaudoin, Bond strength development between latex-modified cement paste and steel, Cem. Concr. Res. 17 (1987) 562–572.
DOI: 10.1016/0008-8846(87)90129-3
Google Scholar
[7]
H. Najm, A.E. Naaman, T.J. Chu, R.E. Robertson, Effects of poly(vinyl alcohol) on fiber cement interfaces. Part I: Bond stress-slip response, Adv. Cem. Based Mater. 1 (1994) 115–121.
DOI: 10.1016/1065-7355(94)90042-6
Google Scholar
[8]
J.M. Gao, C.X. Qian, B. Wang, K. Morino, Experimental study on properties of polymer-modified cement mortars with silica fume, Cem. Concr. Res. 32 (2002) 41–45.
DOI: 10.1016/s0008-8846(01)00626-3
Google Scholar
[9]
M.M. Sprinkel, Twenty-year performance of latex-modified concrete overlays, in: ASTM Spec. Tech. Publ., Publ by ASTM, 1993: p.141–154.
DOI: 10.1520/stp25552s
Google Scholar
[10]
A. Çolak, Properties of plain and latex modified Portland cement pastes and concretes with and without superplasticizer, Cem. Concr. Res. 35 (2005) 1510–1521.
DOI: 10.1016/j.cemconres.2004.11.012
Google Scholar
[11]
R. Wang, P.M. Wang, X.G. Li, Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars, Cem. Concr. Res. 35 (2005) 900–906.
DOI: 10.1016/j.cemconres.2004.07.012
Google Scholar
[12]
J. Feiteira, M.S. Ribeiro, Polymer action on alkali-silica reaction in cement mortar, Cem. Concr. Res. 44 (2013) 97–105.
DOI: 10.1016/j.cemconres.2012.09.008
Google Scholar
[13]
G. Li, X. Zhao, C. Rong, Z. Wang, Properties of polymer modified steel fiber-reinforced cement concretes, Constr. Build. Mater. 24 (2010) 1201–1206.
DOI: 10.1016/j.conbuildmat.2009.12.020
Google Scholar
[14]
G. Barluenga, F. Hernández-Olivares, SBR latex modified mortar rheology and mechanical behaviour, Cem. Concr. Res. 34 (2004) 527–535.
DOI: 10.1016/j.cemconres.2003.09.006
Google Scholar
[15]
Z. Su, K. Sujata, J.M.J.M. Bijen, H.M. Jennings, a. L. a. Fraaij, The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration, Adv. Cem. Based Mater. 3 (1996) 87–93.
DOI: 10.1016/s1065-7355(96)90041-3
Google Scholar
[16]
A.R. Cestari, E.F.S. Vieira, A.A. Pinto, F.C. da Rocha, Synthesis and characterization of epoxy-modified cement slurries-Kinetic data at hardened slurries/HCl interfaces, J. Colloid Interface Sci. 327 (2008) 267–274.
DOI: 10.1016/j.jcis.2008.08.008
Google Scholar
[17]
E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science (80-. ). 277 (1997) 1971–(1975).
DOI: 10.1126/science.277.5334.1971
Google Scholar
[18]
M. Yu, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science (80-. ). 287 (2000) 637–640.
DOI: 10.1126/science.287.5453.637
Google Scholar
[19]
G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon N. Y. 43 (2005) 1239–1245.
DOI: 10.1016/j.carbon.2004.12.017
Google Scholar
[20]
M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials, Cem. Concr. Res. 40 (2010) 1052–1059.
DOI: 10.1016/j.cemconres.2010.02.015
Google Scholar
[21]
M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cem. Concr. Compos. 32 (2010) 110–115.
DOI: 10.1016/j.cemconcomp.2009.10.007
Google Scholar
[22]
A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res. 20 (2008) 65–73.
DOI: 10.1680/adcr.2008.20.2.65
Google Scholar
[23]
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010) 357–401.
DOI: 10.1016/j.progpolymsci.2009.09.003
Google Scholar
[24]
L. Tang, Electrically accelerated methods for determining chloride diffusivity in concrete—current development, Mag. Concr. Res. 48 (1996) 173–179.
DOI: 10.1680/macr.1996.48.176.173
Google Scholar