Effect of Multi-Walled Carbon Nanotubes on Mechanical Properties and Durability of Latex-Modified Cement Mortar

Article Preview

Abstract:

This paper studies the effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of polymer latex-modified cement mortar. Latex-modified cementitious materials possess many advantages. However, reduction of mechanical properties due to the introduction of an amorphous structure within the cement composite has limited its application. In this study, multi-walled carbon nanotubes functionalised with carboxyl group (MWCNTs-COOH), ranging from 0% to 0.15% by weight, are added into mortar modified with 0.6 wt.% polyvinyl alcohol (PVA) latex. Mechanical properties including compressive strength and flexural strength are measured. Water absorption test and rapid chloride diffusion test are performed to assess durability performance. Results indicate considerable increase of compressive strength and flexural strength, as well as improvement in durability, by the addition of MWCNTs-COOH. With Scanning Electron Microscopy conducted on both the latex solution and cement composite, the microstructural changes resulted from MWCNT addition are revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-240

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ohama, K. Demura, H. Nagao, T. Ogi, Adhesion of Polymer-Modified Mortars to Ordinary Cement Mortar by Different Test Methods, in: H.R. Sasse (Ed. ), Adhes. between Polym. Concr. / Adhésion Entre Polymères Bét., Springer US, Boston, MA, 1986: p.719.

DOI: 10.1007/978-1-4899-3454-3_67

Google Scholar

[2] J.E. Isenburg, J.W. Vanderhoff, Hypothesis for Reinforcement of Portland Cement by Polymer Latexes, J. Am. Ceram. Soc. 57 (1974) 242–245.

DOI: 10.1111/j.1151-2916.1974.tb10878.x

Google Scholar

[3] F. A. Shaker, A. S. El-Dieb, M.M. Reda, Durability of Styrene-Butadiene latex modified concrete, Cem. Concr. Res. 27 (1997) 711–720.

DOI: 10.1016/s0008-8846(97)00055-0

Google Scholar

[4] Z. Yang, X. Shi, A.T. Creighton, M.M. Peterson, Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar, Constr. Build. Mater. 23 (2009) 2283–2290.

DOI: 10.1016/j.conbuildmat.2008.11.011

Google Scholar

[5] Q. Zhang, V.C. Li, Adhesive bonding of fire-resistive engineered cementitious composites (ECC) to steel, Constr. Build. Mater. 64 (2014) 431–439.

DOI: 10.1016/j.conbuildmat.2014.04.059

Google Scholar

[6] M. Nakayama, J.J. Beaudoin, Bond strength development between latex-modified cement paste and steel, Cem. Concr. Res. 17 (1987) 562–572.

DOI: 10.1016/0008-8846(87)90129-3

Google Scholar

[7] H. Najm, A.E. Naaman, T.J. Chu, R.E. Robertson, Effects of poly(vinyl alcohol) on fiber cement interfaces. Part I: Bond stress-slip response, Adv. Cem. Based Mater. 1 (1994) 115–121.

DOI: 10.1016/1065-7355(94)90042-6

Google Scholar

[8] J.M. Gao, C.X. Qian, B. Wang, K. Morino, Experimental study on properties of polymer-modified cement mortars with silica fume, Cem. Concr. Res. 32 (2002) 41–45.

DOI: 10.1016/s0008-8846(01)00626-3

Google Scholar

[9] M.M. Sprinkel, Twenty-year performance of latex-modified concrete overlays, in: ASTM Spec. Tech. Publ., Publ by ASTM, 1993: p.141–154.

DOI: 10.1520/stp25552s

Google Scholar

[10] A. Çolak, Properties of plain and latex modified Portland cement pastes and concretes with and without superplasticizer, Cem. Concr. Res. 35 (2005) 1510–1521.

DOI: 10.1016/j.cemconres.2004.11.012

Google Scholar

[11] R. Wang, P.M. Wang, X.G. Li, Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars, Cem. Concr. Res. 35 (2005) 900–906.

DOI: 10.1016/j.cemconres.2004.07.012

Google Scholar

[12] J. Feiteira, M.S. Ribeiro, Polymer action on alkali-silica reaction in cement mortar, Cem. Concr. Res. 44 (2013) 97–105.

DOI: 10.1016/j.cemconres.2012.09.008

Google Scholar

[13] G. Li, X. Zhao, C. Rong, Z. Wang, Properties of polymer modified steel fiber-reinforced cement concretes, Constr. Build. Mater. 24 (2010) 1201–1206.

DOI: 10.1016/j.conbuildmat.2009.12.020

Google Scholar

[14] G. Barluenga, F. Hernández-Olivares, SBR latex modified mortar rheology and mechanical behaviour, Cem. Concr. Res. 34 (2004) 527–535.

DOI: 10.1016/j.cemconres.2003.09.006

Google Scholar

[15] Z. Su, K. Sujata, J.M.J.M. Bijen, H.M. Jennings, a. L. a. Fraaij, The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration, Adv. Cem. Based Mater. 3 (1996) 87–93.

DOI: 10.1016/s1065-7355(96)90041-3

Google Scholar

[16] A.R. Cestari, E.F.S. Vieira, A.A. Pinto, F.C. da Rocha, Synthesis and characterization of epoxy-modified cement slurries-Kinetic data at hardened slurries/HCl interfaces, J. Colloid Interface Sci. 327 (2008) 267–274.

DOI: 10.1016/j.jcis.2008.08.008

Google Scholar

[17] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science (80-. ). 277 (1997) 1971–(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[18] M. Yu, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science (80-. ). 287 (2000) 637–640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[19] G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon N. Y. 43 (2005) 1239–1245.

DOI: 10.1016/j.carbon.2004.12.017

Google Scholar

[20] M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials, Cem. Concr. Res. 40 (2010) 1052–1059.

DOI: 10.1016/j.cemconres.2010.02.015

Google Scholar

[21] M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cem. Concr. Compos. 32 (2010) 110–115.

DOI: 10.1016/j.cemconcomp.2009.10.007

Google Scholar

[22] A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res. 20 (2008) 65–73.

DOI: 10.1680/adcr.2008.20.2.65

Google Scholar

[23] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010) 357–401.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[24] L. Tang, Electrically accelerated methods for determining chloride diffusivity in concrete—current development, Mag. Concr. Res. 48 (1996) 173–179.

DOI: 10.1680/macr.1996.48.176.173

Google Scholar