[1]
Chuah S, Pan Z, Sanjayan J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials. 2014, 73: 113-124.
DOI: 10.1016/j.conbuildmat.2014.09.040
Google Scholar
[2]
Singh L P, Karade S R, Bhattacharyya S K, et al. Beneficial role of nanosilica in cement based materials - A review[J]. CONSTRUCTION AND BUILDING MATERIALS. 2013, 47: 1069-1077.
DOI: 10.1016/j.conbuildmat.2013.05.052
Google Scholar
[3]
Kawashima S, Hou P K, Corr D J, et al. Modification of cement-based materials with nanoparticles[J]. CEMENT & CONCRETE COMPOSITES. 2013, 36(SI): 8-15.
DOI: 10.1016/j.cemconcomp.2012.06.012
Google Scholar
[4]
Schmidt M, Amrhein K, Braun T, et al. Nanotechnological improvement of structural materials – Impact on material performance and structural design[J]. Cement and Concrete Composites. 2013, 36: 3-7.
DOI: 10.1016/j.cemconcomp.2012.11.003
Google Scholar
[5]
Sanchez F, Sobolev K. Nanotechnology in concrete – A review[J]. Construction and Building Materials. 2010, 24(11): 2060-(2071).
DOI: 10.1016/j.conbuildmat.2010.03.014
Google Scholar
[6]
Raki L, Beaudoin J, Alizadeh R, et al. Cement and Concrete Nanoscience and Nanotechnology[J]. Materials. 2010, 3(2): 918-942.
DOI: 10.3390/ma3020918
Google Scholar
[7]
Lee B Y, Kurtis K E. Influence of TiO2 Nanoparticles on Early C3S Hydration[J]. Journal of the American Ceramic Society. 2010, 93(10): 3399-3405.
DOI: 10.1111/j.1551-2916.2010.03868.x
Google Scholar
[8]
Ghafari E, Costa H, Julio E, et al. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete[J]. MATERIALS & DESIGN. 2014, 59: 1-9.
DOI: 10.1016/j.matdes.2014.02.051
Google Scholar
[9]
Camiletti J, Soliman A M, Nehdi M L. Effects of nano-and micro-limestone addition on early-age properties of ultra-high-performance concrete[J]. Materials and structures. 2013, 46(6): 881-898.
DOI: 10.1617/s11527-012-9940-0
Google Scholar
[10]
Jo B, Kim C, Tae G, et al. Characteristics of cement mortar with nano-SiO< sub> 2 particles[J]. construction and building Materials. 2007, 21(6): 1351-1355.
DOI: 10.1016/j.conbuildmat.2005.12.020
Google Scholar
[11]
Al-Salami A E, Morsy M S, Taha S, et al. Physico-mechanical characteristics of blended white cement pastes containing thermally activated ultrafine nano clays[J]. Construction and Building Materials. 2013, 47: 138-145.
DOI: 10.1016/j.conbuildmat.2013.05.011
Google Scholar
[12]
Iijima M, Kamiya H. Surface modification for improving the stability of nanoparticles in liquid media[J]. KONA Powder and Particle Journal. 2009, 27: 119-129.
DOI: 10.14356/kona.2009012
Google Scholar
[13]
E J. The effect of superplasticizers' chemical structure on their efficiency in cement pastes[J]. Construction and Building Materials. 2013, 38: 1204-1210.
DOI: 10.1016/j.conbuildmat.2012.09.032
Google Scholar
[14]
Habbaba A, Lange A, Plank J. Synthesis and performance of a modified polycarboxylate dispersant for concrete possessing enhanced cement compatibility[J]. Journal of Applied Polymer Science. 2013, 129(1): 346-353.
DOI: 10.1002/app.38742
Google Scholar
[15]
Lei L, Plank J. A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance[J]. Cement and Concrete Research. 2012, 42(10): 1299-1306.
DOI: 10.1016/j.cemconres.2012.07.001
Google Scholar
[16]
Ran Q, Qiao M, Liu J, et al. Impact of molecular size of SMA-g-MPEG comb-like polymer on the dispersion of CaCO3 suspensions[J]. Colloid and Polymer Science. 2012, 290(5): 435-443.
DOI: 10.1007/s00396-011-2554-1
Google Scholar
[17]
Oertel T, Hutter F, Helbig U, et al. Amorphous silica in ultra-high performance concrete: First hour of hydration[J]. Cement and Concrete Research. 2014, 58(0): 131-142.
DOI: 10.1016/j.cemconres.2014.01.008
Google Scholar
[18]
Gu Y, Ran Q, Shu X, et al. Synthesis of nanoSiO2-PCE core-shell nanoparticles and its effect on cement hydration at early age[J]. Construction and Building Materials. 2016, 114: 673-680.
DOI: 10.1016/j.conbuildmat.2016.03.093
Google Scholar