[1]
J. Kropp, H.K. Hilsdorf, Performance criteria for concrete durability, RILEM report 12, E & FN Spon, London (1995) 97-133.
Google Scholar
[2]
J.R. Clifton, L.I. Knab, Service life of concrete, NISTIR 89-4086, National Bureau of Standards, U.S. Department of Commerce, Washington (1989) 1-87.
Google Scholar
[3]
J.R. Clifton, Predicting the remaining service life of concrete, NISTIR 4712, National Bureau of Standards, U.S. Department of Commerce, Washington (1991) 1-58.
Google Scholar
[4]
L. Tang, L.O. Nilsson, Service life prediction for concrete structures under seawater by a numerical approach, DBMC Component 7, E&FN Spon (1996) 97-106.
Google Scholar
[5]
C.L. Page, N.R. Short, A.E. Tarras, Diffusion of chloride ions in hardened cement paste, Cement and Concrete Research, 11,. 3, (1981) 395-406.
DOI: 10.1016/0008-8846(81)90111-3
Google Scholar
[6]
B.H. Oh, B.S. Jang, Chloride diffusion analysis of concrete structures considering the effects of reinforcements, ACI Material Journal 100 (2) (2003) 143-149.
DOI: 10.14359/12554
Google Scholar
[7]
B.H. Oh, S.Y. Jang, Prediction of diffusivity of concrete based on simple analytic equations, Cement and Concrete Research 34 (3) (2004) 463-480.
DOI: 10.1016/j.cemconres.2003.08.026
Google Scholar
[8]
B.H. Oh, S.Y. Jang, Effects of material and environmental parameters on chloride penetration profiles in concrete structures, Cement and Concrete Research 37 (1) (2007) 47-53.
DOI: 10.1016/j.cemconres.2006.09.005
Google Scholar
[9]
M. Collerpardi, A. Marcialis, R. Turiziani, Penetration of chloride ions in cement pastes and in concrete, Journal of American Ceramic Society 55 (10) (1972) 534-535.
DOI: 10.1111/j.1151-2916.1972.tb13424.x
Google Scholar
[10]
O.E. Gjørv, O. Vennesland, Diffusion of chloride ions from seawater into concrete, Cement and Concrete Research 9 (2) (1979) 229–238.
DOI: 10.1016/0008-8846(79)90029-2
Google Scholar
[11]
A.V. Saetta, R.V. Scotta, R.V. Vitaliani, Analysis of chloride diffusion into partially saturated concrete, ACI Material Journal, 90 (5) (1993) 441-451.
Google Scholar
[12]
R.F.M. Bakker, Corrosion of steel in concrete, Report of Technical Committee 60-CSC, RILEM, London (1988) 47-54.
Google Scholar
[13]
J.P. Broomfield, Corrosion of steel in concrete: understanding, investigation, and repair, RILEM, E & FN Spon (1997) 20-25.
Google Scholar
[14]
B.H. Oh, S.Y. Jang, Y.S. Shin, Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures, Magazine of Concrete Research, 55, 2, (2003) 117-124.
DOI: 10.1680/macr.2003.55.2.117
Google Scholar
[15]
C.L. Page, N.R. Short, W.R. Holden, The influence of different cements on chloride-induced corrosion of reinforcing steel, Cement and Concrete Research 16 (1) (1986) 79-86.
DOI: 10.1016/0008-8846(86)90071-2
Google Scholar
[16]
S.E. Hussain, A.S. Al-Gahtani, Rasheeduzzafar, Chloride threshold for corrosion of reinforcement in concrete, ACI Materials Journal 94 (6) (1996) 534-538.
Google Scholar
[17]
B.H. Oh et al., Deterioration tests of structural materials and development of deterioration model for NPP containment structures, Korea Atomic Energy Research Institute (2001).
Google Scholar
[18]
M. Maes, E. Gruyaert, N. De Belie, Resistance of concrete against combined attack of chlorides and sulphates. Proceedings of International Congress on Durability of Concrete (ICDC 2012), Trondheim, Norway, June 18-21 (2012) 1-14.
Google Scholar
[19]
ASTM C1152, Standard test method for acid-soluble chloride in mortar and concrete, (1997).
Google Scholar
[20]
AASHTO T260, Standard method for sampling and testing of total chloride ion in concrete and concrete raw materials, AASHTO Designation T260, Washington D. C. (1997).
Google Scholar