[1]
Hwan-Oh B, Yup Jang S. Effects of material and environmental parameters onchloride penetration profiles in concrete structures. Cement and Concrete Research2007; 37(1): 47-53.
DOI: 10.1016/j.cemconres.2006.09.005
Google Scholar
[2]
Mehta PK. Concrete: structure, properties and materials. Ed Prentice-Hall; 1986. pp.105-169.
Google Scholar
[3]
Khelidj A, Loukili A, Bastian G. Experimental study of the hydro-chemicalcoupling inside maturing concretes: effect on various types of shrinkage. Materials andStructures 1998; 31(9): 588-94.
DOI: 10.1007/bf02480608
Google Scholar
[4]
Nielsen EP, Geiker MR. Chloride diffusion in partially saturated cementitiousmaterial. Cement and Concrete Research 2003; 33(1): 133-8.
DOI: 10.1016/s0008-8846(02)00939-0
Google Scholar
[5]
Rob B. Polder, Willy H.A. Peelen. Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cement & Concrete Composites 2002; 24: 427-435.
DOI: 10.1016/s0958-9465(01)00074-9
Google Scholar
[6]
Amor Ben Fraj, Stéphanie Bonnet, Abdelhafid Khelidj. New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag. Construction and Building Materials 2012; 35: 761-771.
DOI: 10.1016/j.conbuildmat.2012.04.106
Google Scholar
[7]
H. Kuosa, R.M. Ferreira, E. Holt, M. Leivo, E. Vesikari. Effect of coupled deterioration by freeze–thaw, carbonation and chlorides on concrete service life. Cement & Concrete Composites 2014; 47: 32-40.
DOI: 10.1016/j.cemconcomp.2013.10.008
Google Scholar
[8]
K. Tuutti. Corrosion of steel in concrete[M]. Sweden, CBE Forskning fo 4. 82 (Swedish Cement and Concrete Research Institute Stockholm), (1982).
Google Scholar
[9]
Zhiwu Yu, Ying Chen, Peng Liu, Weilun Wang. Accelerated simulation of chloride ingress into concrete under drying-wetting alternation condition chloride environment. Construction and Building Materials 2015; 93: 205-213.
DOI: 10.1016/j.conbuildmat.2015.05.090
Google Scholar
[10]
A. Costa, J. Appleton. Chloride penetration into concrete in marine environment-Part I: Main parameters affecting chloride penetration. Materials and Structures 1999; 32: 252-259.
DOI: 10.1007/bf02479594
Google Scholar
[11]
Crank J. The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford; (1986).
Google Scholar
[12]
Bamforth PB, Price WF, Emerson M (1997). An internationalreview of chloride ingress into structural concrete. Transport Research Laboratory, Taywood Engineering LTD., Contractor Report 359, pp.95-114.
Google Scholar
[13]
Carmen Andrade, Jose Miguel Dı´ez, Cruz Alonso. Mathematical Modeling of a Concrete Surface Skin Effect, on Diffusion in Chloride Contaminated Media. Advanced Cement Based Material 1997; 6: 39-44.
DOI: 10.1016/s1065-7355(97)00002-3
Google Scholar
[14]
Chanakya Arya, Samira Bioubakhsh, Perry Vassie. Chloride penetration in concretesubject to wet–dry cycling: influence of pore structure. Structures and Buildings 2014; 167 (SB6): 343-354.
DOI: 10.1680/stbu.12.00067
Google Scholar
[15]
Chanakya Arya, Perry Vassie, Samira Bioubakhsh. Chloride penetration in concretesubject to wet/dry cycling: influence of moisture content. Structures and Buildings 2014; 167(SB2): 94-107.
DOI: 10.1680/stbu.12.00027
Google Scholar
[16]
K. Hong, R.D. Hooton. Effects of cyclic chloride exposure on penetration of concrete cover. Cement and Concrete Research 1999; 29: 1379-1386.
DOI: 10.1016/s0008-8846(99)00073-3
Google Scholar
[17]
Tuutti K. Analysis of pore solution squeezed out of cement andmortar. Nordic Concrete Research 1982; 1: 25. 1-16.
Google Scholar