[1]
R.J.M. Konings, T.R. Allen, R.E. Stoller, S. Yamanaka, Comprehensive nuclear materials, Elsevier, Amsterdam, (2012).
Google Scholar
[2]
Z.P. Bazant, M.F. Kaplan, Concrete at High Temperatures: Materials Properties and Mathematical Models, Longman Group Limited, London, (1996).
Google Scholar
[3]
M.Y.L. Chew, The assessment of fire damaged concrete, Build. Environ. 28(1) (1993) 97-102.
Google Scholar
[4]
G.A. Khoury, Compressive strength of concrete at high temperatures, Mag. Concr. Res. (1992) 291-306.
Google Scholar
[5]
L.T. Phan, N.J. Carino, Effects of test conditions and mixture proportions on behaviour of high-strength concrete exposed to high temperatures, ACI Mater. J. 99(1) (2002) 54-66.
DOI: 10.14359/11317
Google Scholar
[6]
C.S. Poon, Z.H. Shui, L. Lam, Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures, Cem. Concr. Res. 34 (2004) 2215-2222.
DOI: 10.1016/j.cemconres.2004.02.011
Google Scholar
[7]
J. Xiao, H. Falkner, on residual strength of high-strength concrete with and without polypropylene fibers at elevated temperatures, Fire Saf. J. 41(2) (2006) 115-121.
DOI: 10.1016/j.firesaf.2005.11.004
Google Scholar
[8]
S.L. Suhaendi, H. Takashi, Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition, Cem. Concr. Res. 36 (2006) 1672-1678.
DOI: 10.1016/j.cemconres.2006.05.006
Google Scholar
[9]
A. Behnood, M. Ghandehari, Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Saf. J. 44 (2009) 1015-1022.
DOI: 10.1016/j.firesaf.2009.07.001
Google Scholar
[10]
A. Noumowe, Mechanical properties and microstruture of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 ºC, Cem. Concr. Res. 35 (2005) 2192-2198.
DOI: 10.1016/j.cemconres.2005.03.007
Google Scholar
[11]
P. Pliya, A. -L. Beaucour, A. Noumowe, Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature, Constr. Build. Mater. 25 (2011) 1926-(1934).
DOI: 10.1016/j.conbuildmat.2010.11.064
Google Scholar
[12]
S.P. Shah, A.H. Ahmed, High Performance Concrete: Properties and Applications, McGraw-Hill, New York, (1994).
Google Scholar
[13]
G. Sanjayan, L.J. Stocks Spalling of high strength silica fume concrete in fire, ACI Mater. J. 90(2) (1993) 170-174.
DOI: 10.14359/4015
Google Scholar
[14]
S.Y.N. Chan, G.F. Peng, M. Anson, Fire behavior of high-performance concrete made with silica fume at various moisture contents, ACI Mater. J. 96(3) (1999) 405-409.
DOI: 10.14359/640
Google Scholar
[15]
M. Ozawa, H. Morimoto, Effects of various fibres on high-temperature spalling in high-performance concrete, Constr. Build. Mater. 71 (2014) 83-92.
DOI: 10.1016/j.conbuildmat.2014.07.068
Google Scholar
[16]
F.A. Ali, R. Connolly, P.J.E. Sullivan, Spalling of high strength concrete at elevated temperature, J. Appl. Fire Sci. 6(1) (1997) 3-14.
Google Scholar
[17]
C. Castillo, A.J. Durrani, Effect of transient high temperature on high-strength concrete, ACI Mater. J. 87(1) (1990) 47-53.
Google Scholar
[18]
F.J. Ulm, O. Coussy, Z.P. Bazant, The chunnel fire: chemoplastic softening in rapidly heated concrete, J. Eng. Mech. 125(3) (1999) 272-282.
DOI: 10.1061/(asce)0733-9399(1999)125:3(272)
Google Scholar
[19]
X. Liu, G. Ye, G. De Schutter, Y. Yuan, L. Taerwe, on the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high performance cement paste, Cem. Concr. Res. 38 (2008) 487-499.
DOI: 10.1016/j.cemconres.2007.11.010
Google Scholar
[20]
G. Ye, X. Liu, G. De Schutter, et al, Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature, Cem. Concr. Res. 37 (2007) 978-987.
DOI: 10.1016/j.cemconres.2007.02.011
Google Scholar
[21]
M. Uysal, Self-compacting concrete incorporating filler additives: Performance at high temperatures, Constr. Build. Mater. 26 (2012) 701-706.
DOI: 10.1016/j.conbuildmat.2011.06.077
Google Scholar
[22]
H. Chu, J. Jiang, W. Sun, et al. Thermal behavior of siliceous and ferro-siliceous sacrificial concrete subjected to elevated temperatures. Mater. Des. 95 (2016) 470-480.
DOI: 10.1016/j.matdes.2016.01.127
Google Scholar
[23]
H. Chu, J. Chen, The experimental study on the correlation of resistivity and damage for conductive concrete, Cem. Concr. Compos. 67 (2016) 12-19.
Google Scholar
[24]
M. Prisco, R. Felicetti, P.G. Gambarova, C. Failla, On the fire behavior of SFRC and SFRC structures in tension and bendig, Proceedings: 4th International RILEM Workshop on High Performance Fiber – Reinforced Cement Composites, Bagneux, France, (2003).
Google Scholar