[1]
R. Allison, Inquiry into the Fire on Heavy Goods Vehicle Shuttle 7539 on 18 November 1996, Department of Transport - Channel Tunnel Safety Authority, London, (1997).
Google Scholar
[2]
J. Fellinger, A. Breunese, Fire Safe Design: Make it Concrete!, in: P.G. Gambarova, R. Felicetti, A. Meda, P. Riva (Eds. ), Fire Design of Concrete Structures: What now? What next?, Proceedings of Workshop, Starrylink Editrice Brescia, Brescia, 2015, pp.313-316.
Google Scholar
[3]
É. Lublóy, O. Czoboly, V. Hlaviĉka, Zs. Oros, G.L. Balázs, Experiences of the fire case of athletic hall of the University of Physical Education in Budapest 15 Oct. 2015, VASBETONÉPÍTÉS. (http: /www. fib. bme. hu/folyoirat/vb/vb2015_3. pdf). 2015/3, (2015).
Google Scholar
[4]
K. Ch. Thielen, Strength and Deformation of Concrete Subjected to high Temperature and Biaxial Stress-Test and Modelling, Deutscher Ausschuss für Stahlbeton, Book 437, Berlin, (1994).
Google Scholar
[5]
O. Aßbrock, J. Carlswärd, R. Dietze, P. Guirguis, W. Hemrich, A. Lambrechts, I. Löfgren, M. Schulz, J. Troy, J. Gibbs, T. Harrison, C. Ressler, Guidance to fibre concrete, Properties Specification and Practice in Europe, European Ready Mixed Concrete Organization, (2012).
Google Scholar
[6]
P. Máca, R. Sovják, P. Konvalinka, Mix design of UHPFRC and its response to projectile impact, International Journal of Impact Engineering. 63 (2014) 158–163.
DOI: 10.1016/j.ijimpeng.2013.08.003
Google Scholar
[7]
R. Yu, P. Spiesz, H.J.H. Brouwers, Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres, Construction and Building Materials. 79 (2015) 273–282.
DOI: 10.1016/j.conbuildmat.2015.01.050
Google Scholar
[8]
Y. Kusumawardaningsih, E. Fehling, M. Ismail, A.A.M. Aboubakr, Tensile strength behaviour of UHPC and UHPFRC, Civil Engineering Innovation for a Sustainable. 125 (2015) 1081–1086.
DOI: 10.1016/j.proeng.2015.11.166
Google Scholar
[9]
A. Caverzan, M. di Prisco, E. Cadoni, Dynamic behaviour of HPFRCC: The influence of fibres dispersion, EPJ Web of Conferences, 94 (2015), 1-6.
DOI: 10.1051/epjconf/20159401064
Google Scholar
[10]
D.P. Bentz, Fibres, percolation, and spalling of high-performance concrete, ACI Mater J. 97-3 (2000), 351–359.
Google Scholar
[11]
C. Rossino, F. Lo Monte, S. Cangiano, R. Felicetti, P.G. Gambarova, Concrete spalling sensitivity versus microstructure: Preliminary results on the effect of polypropylene fibres, MATEC Web of Conferences. 6 (2013) 1-9.
DOI: 10.1051/matecconf/20130602002
Google Scholar
[12]
C. Rossino, F. Lo Monte, S. Cangiano, R. Felicetti, P.G. Gambarova, HPC Subjected to High Temperature: A Study on Intrinsic and Mechanical Damage, Key Engineering Materials. 629-630 (2014) 239-244.
DOI: 10.4028/www.scientific.net/kem.629-630.239
Google Scholar
[13]
É. Lublóy, Effect of fire to the concrete structures, PhD dissertation, Budapest, (2008).
Google Scholar
[14]
fib bulletin 46, Fire design of concrete structures – structural behaviour and assessment, State-of-art report, TG 4. 3, DCC Document Competence Center Siegmar Kästl e.K., Germany, (2008).
Google Scholar
[15]
I. Markovic, J.C. Walraven, J.G.M. Van Mier, Experimental evaluation of fibre reinforced concrete, in: Proc. 4th International RILEM workshop on High Performance Hybrid Fibre Concrete, A.E. Naaman, H.W. Reinhardt (Eds. ), Bagneux, (2013).
Google Scholar
[16]
Y. Ding, C. Azevedo, J.B. Aguiar, S. Jalali, Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature, www. elsevier. com/locate/conbuildmat (2012).
DOI: 10.1016/j.conbuildmat.2011.04.058
Google Scholar