[1]
Carvel, R., Beard A. N., Passive fire protection in concrete tunnels, The handbook of tunnel fire safety, Thomas Telford, 2005, 116-118.
DOI: 10.1680/hotfs.31685.0006
Google Scholar
[2]
Ingason, H., Kumm, M., Nilsson, D., Lönnermark, A., Claesson, A., Li, Y. Z., .. & Forsén, R. (2012). The METRO project: Final report.
Google Scholar
[3]
Colella, Francesco, et al. Calculation and design of tunnel ventilation systems using a two-scale modelling approach., Building and Environment 44. 12 (2009): 2357-2367.
DOI: 10.1016/j.buildenv.2009.03.020
Google Scholar
[4]
Quintiere, James G. Fundamentals of enclosure fire" zone" models., Journal of Fire Protection Engineering 1. 3 (1989): 99-119.
DOI: 10.1177/104239158900100302
Google Scholar
[5]
Zhang, C., et al. Simulation methodology for coupled fire-structure analysis: modeling localized fire tests on a steel column., Fire Technology, Vol. 52, No. 1, 2015, 1-24.
DOI: 10.1007/s10694-015-0495-9
Google Scholar
[6]
Gawin, D., Pesavento, F., Schrefler, B. A., What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model., International journal of solids and structures, Vol. 48, No. 13, 2011, 1927-(1944).
DOI: 10.1016/j.ijsolstr.2011.03.004
Google Scholar
[7]
Gawin, D., Pesavento, F., Schrefler, B. A., What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 2: Comparison between models., International Journal of Solids and Structures, Vol. 48, No. 13, 2011, 1945-(1961).
DOI: 10.1016/j.ijsolstr.2011.03.003
Google Scholar
[8]
Gawin, D., Pesavento, F., Schrefler, B. A., Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation., Computer methods in applied mechanics and engineering, Vol. 192, No. 13, 2003, 1731-1771.
DOI: 10.1016/s0045-7825(03)00200-7
Google Scholar
[9]
Schrefler, B. A., et al. Concrete at high temperature with application to tunnel fire., Computational Mechanics, Vol. 29, No. 1, 2002, 43-51.
Google Scholar
[10]
Schrefler, B. A., et al. Thermal coupling of fluid flow and structural response of a tunnel induced by fire., International Journal for Numerical Methods in Engineering, Vol. 87, No. 1‐5, 2011, 361-385.
DOI: 10.1002/nme.3077
Google Scholar
[11]
McGrattan, K., Hostikka S., McDermott R., Fire Dynamics Simulator (version 6) Technical Reference Guide Volume 3: Validation, NIST Special Publication 1018-3, 2014, 1-605.
DOI: 10.6028/nist.sp.1018e6
Google Scholar
[12]
McGrattan, K., et al. Fire dynamics simulator (version 6), technical reference guide. ", NIST special publication 1018. 5, 2014, 1-151. McGrattan, K., et al. "Fire dynamics simulator (version 6), User's guide., NIST special publication 1018. 5, 2014, 1-151.
DOI: 10.6028/nist.sp.1018
Google Scholar
[13]
Gawin, D., Majorana, C. E., Schrefler, B. A., Numerical analysis of hygro‐thermal behaviour and damage of concrete at high temperature., Mechanics of Cohesive‐frictional Materials, Vol. 4, No. 1, 1999, 37-74.
DOI: 10.1002/(sici)1099-1484(199901)4:1<37::aid-cfm58>3.0.co;2-s
Google Scholar
[14]
Gawin, D., Pesavento, F., Schrefler, B. A., Modelling of hygro‐thermal behaviour and damage of concrete at temperature above the critical point of water., International Journal for Numerical and Analytical Methods in Geomechanics , Vol. 26, No. 6, 2002, 537-562.
DOI: 10.1002/nag.211
Google Scholar
[15]
Gawin, D., Pesavento, F., Schrefler, B. A., Modelling of deformations of high strength concrete at elevated temperatures., Materials and Structures, Vol. 37, No. 4, 2004, 218-236.
DOI: 10.1007/bf02480631
Google Scholar
[16]
Wickström, U., Duthinh, D., McGrattan, K., Adiabatic surface temperature for calculating heat transfer to fire exposed structures., Proceedings of the Eleventh International Interflam Conference. Interscience Communications, Vol. 167. (2007).
Google Scholar
[17]
Silva, J. C., Tridimensional interface model to fire-thermomechanical analysis of structures under fire conditions., Ph.D. Thesis, Civil Engineering Program COPPE/UFRJ, 2014, 24-32 (in Portuguese).
Google Scholar
[18]
Drysdale, D., Heat Transfer, An introduction to fire dynamics. John Wiley & Sons, 2011. 35-79.
Google Scholar
[19]
Gawin, D., et al. Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis., Computers and Concrete, Vol. 2, No. 3, 2005, 203-214.
DOI: 10.12989/cac.2005.2.3.203
Google Scholar
[20]
Zeiml, M., Concrete subjected to fire loading - From experimental investigation of spalling and mass-transport properties to structural safety assessment of tunnel linings under fire., Ph.D. thesis, Vienna University of Technology, 2008, 7-24.
DOI: 10.1007/s11440-008-0069-9
Google Scholar
[21]
Gawin, D., Pesavento, F., & Schrefler, B. A., Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete,. Computer methods in applied mechanics and engineering, Vol. 195, No. 41, 2006, 5707-5729.
DOI: 10.1016/j.cma.2005.10.021
Google Scholar