[1]
R-P. Martin, O. Omikrine Metalssi and F. Toutlemonde, Importance of considering the coupling between transfer properties, alkali leaching and expansion in the modelling of concrete beams affected by internal swelling reactions, Construction and Building Materials, 49 (2013).
DOI: 10.1016/j.conbuildmat.2013.08.008
Google Scholar
[2]
K.L. Scrivener, D. Damidot and C. Famy, Possible mechanisms of expansion of concrete exposed to elevated temperatures during curing (also known as DEF) and implications for avoidance of field problems, Cement and Concrete and Aggregates, 21 (1) (1999).
DOI: 10.1520/cca10513j
Google Scholar
[3]
G.W. Scherer, Crystallisation in pores, Cement and Concrete Research, 29 (1999) 1347-1358.
Google Scholar
[4]
O. Omikrine Metalssi, B. Godart and F. Toutlemonde, Effectiveness of Nondestructive Methods for the Evaluation of Structures Affected by Internal Swelling Reactions: A Review of Electric, Seismic and Acoustic Methods Based on Laboratory and Site Experiences, Experimental Techniques, DOI: 10. 1111/ext. 12010 (2013).
DOI: 10.1111/ext.12010
Google Scholar
[5]
O. Omikrine-Metalssi, J-F. Seignol, S. Rigobert and F. Toutlemonde, Modelling the crack opening-closing and possible remedial sawing operation of AAR-effected dams, Engineering Failure Analysis, 36 (2014) 199-214.
DOI: 10.1016/j.engfailanal.2013.10.009
Google Scholar
[6]
N. Baghdadi, F. Toutlemonde and J.F. Seignol, Chemo-mechanical model describing the expansion due to internal sulphate attack: numerical simulation, in Concrete modelling CONMOD'08, Delft, (The Netherlands), May 26-28, RILEM PRO 58 (2008) 291-298.
Google Scholar
[7]
J. -F. Seignol, N. Baghdadi, and F. Toutlemonde, A macroscopic chemo-mechanical model aimed at re-assessement of DEF affected concrete structures, 1st Int. Conf. on computational technologies in concrete structures, Jeju, Korea, (2009) 422-440.
Google Scholar
[8]
Brunetaud X., Etude de l'influence de différents paramètres et de leurs interactions sur la cinétique et l'amplitude de la réaction sulfatique interne, Ph.D. Thesis, ECP, Paris, (2005).
Google Scholar
[9]
N. Baghdadi, Modélisation du couplage chimico-mécanique d'un béton atteint d'une réaction sulfatique interne, PhD-thesis (Ecole nationale des ponts & chaussées, Marne-la-Vallée, 2008).
Google Scholar
[10]
S. Multon, A. Sellier and M. Cyr, Chemo–mechanical modeling for prediction of alkali silica reaction (ASR) expansion, Cement and Concrete Research, 39 (2009) 490–500.
DOI: 10.1016/j.cemconres.2009.03.007
Google Scholar
[11]
Martin R. -P., Analyse sur structures modèles des effets mécaniques de la réaction sulfatique interne du béton, Ph.D. Thesis, Université Paris-Est, (2010).
Google Scholar
[12]
S. Multon, F. -X. Barin, B. Godart and F. Toutlemonde, Estimation of the residual expansion of concrete affected by alkali silica reaction, Journal of Materials in Civil Engineering, 20 (1) (2008) 54-62.
DOI: 10.1061/(asce)0899-1561(2008)20:1(54)
Google Scholar
[13]
Seignol, JF, Baghdadi, N, and Toutlemonde, F (2009): A macroscopic chemo-mechanical model aimed at re-assessement of DEF affected concrete structures. 1st Int. Conf. on computational technologies in concrete structures, Jeju, Korea, 422-440.
Google Scholar
[14]
S. Poyet, A. Sellier, B. Capra, G. Foray, J. -M. Torrenti, H. Cognon and E. Bourdarot, Modelling of ASR in concrete, part 2: influence of water on ASR, in 12th International Conference on AAR in concrete, Beijing, China, 2004, 185-190.
DOI: 10.1617/s11527-006-9139-3
Google Scholar
[15]
S. Multon and F. Toutlemonde, Effect of Applied Stresses on Alkali-Silica Reaction Induced Expansions, Cement and Concrete Research, 36 (5) (2006) 912-920.
DOI: 10.1016/j.cemconres.2005.11.012
Google Scholar
[16]
P. Humbert, A. Dubouchet, G. Fezans and D. Remaud, CESAR-LCPC, un progiciel de calcul dédié au génie civil, Bulletin des laboratoires des ponts et chaussées, 256-257, 7-37, LCPC, Paris (2005).
Google Scholar