[1]
Davidovits, J., 2011. Geopolymer Chemistry and Applications 3rd ed., Saint Quentin, France: Institut Geopolymere.
Google Scholar
[2]
Ng TS, Foster SJ, 2012. Development of a mix design methodology for high-performance geopolymer mortars, Structural Concrete, 14(2): 148 – 156.
DOI: 10.1002/suco.201200018
Google Scholar
[3]
Provis JL, Van Deventer JSJ., 2009. Geopolymers: Structures, Processing, Properties, and Industrial Applications. Cambridge: Woodhead Publishing Limited.
Google Scholar
[4]
Aly T, Sanjayan JG, 2010. Effect of pore-size distribution on shrinkage of concretes. Journal of Materials in Civil Engineering, 22(5): 525-532.
DOI: 10.1061/(asce)0899-1561(2010)22:5(525)
Google Scholar
[5]
Lloyd NA, Rangan BV, 2010. Geopolymer concrete with fly ash. 2nd Int. Conf. on Sustainable Construction Materials and Technologies, pp.1493-1504.
Google Scholar
[6]
Sagoe-Crentsil K, 2009. Role of oxide ratios on engineering performance of Fly-ash geopolymer binder systems. Ceramic Engineering and Science Proceedings, 29 (10): 175-184.
DOI: 10.1002/9780470456200.ch17
Google Scholar
[7]
Sofi M, van Deventer JSJ, Mendis PA, 2007. Engineering properties of inorganic polymer concretes (IPCs). Cement Concr Res, 37: 251–257.
DOI: 10.1016/j.cemconres.2006.10.008
Google Scholar
[8]
Fernandez-Jimenez AM, Palomo A, Lopez-Hombrados C., 2006. Engineering properties of alkali-activated fly ash concrete. ACI Mater J, 103(2): 106–112.
Google Scholar
[9]
L. Bertolini, B. Elsener, P. Pedeferri, R. Polder, Corrosion of steel in concrete, Wiley VCH 2004, 1st ed; also 2nd ed (2013).
Google Scholar
[10]
Nasser A, Clément A, Laurens S, Castel A, 2010. Influence of steel-concrete interface condition on galvanic corrosion currents in carbonated concrete. Corrosion Science, 52(9): 2878-2890.
DOI: 10.1016/j.corsci.2010.04.037
Google Scholar
[11]
Zhang R, Castel A, François R, 2011. Influence of steel-concrete interface defects owing to the top-bar effect on the chloride induced corrosion of reinforcement. Mag. of Concr. Res., 63(10): 773-781.
DOI: 10.1680/macr.2011.63.10.773
Google Scholar
[12]
ACI committee 222, 1985. Corrosion of metal in concrete. ACI Journal Proceedings, 82(1): 3–32.
Google Scholar
[13]
RILEM TECHNICAL COMMITTEE 124-SRC, 1994. Draft recommendation for repair strategies for repair strategies for concrete structures damaged by reinforcement corrosion. Mat. and Struct., 27(171): 415–436.
DOI: 10.1007/bf02473446
Google Scholar
[14]
RILEM TC 154-EMC, 2003. Mater. and Struct., 36(261), 461-471.
DOI: 10.1617/13718
Google Scholar
[15]
Poupard O, L'Hostis V, Catinaud S, Petre-Lazar I, 2006. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cem. Concr. Res., 36(3): 504-520.
DOI: 10.1016/j.cemconres.2005.11.004
Google Scholar
[16]
ASTM, 2009. ASTM C876 - 09 Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International.
Google Scholar
[17]
Andrade C, Alonso C, 1996. Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5): 315–328.
DOI: 10.1016/0950-0618(95)00044-5
Google Scholar
[18]
Stern, M. & Geary, A.L., 1957. Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves. Journal of The Electrochemical Society, 104(1), p.56.
DOI: 10.1149/1.2428473
Google Scholar