[1]
Comité Euro-International du Béton, Concrete structures under impact and impulsive loading, Bulletin D'Information. 187 (1988).
Google Scholar
[2]
Nuclear Energy Agency, Improving Robustness Assessment Methodologies for Structures Impacted by Missiles (IRIS_2012): Final Report. (2014).
Google Scholar
[3]
S. Saatci, F. J. Vecchio, Effects of Shear Mechanisms on Impact Behavior of Reinforced Concrete Beams, ACI Structural J. 106(1) (2009) 78-86.
DOI: 10.14359/56286
Google Scholar
[4]
F. J. Vecchio, M. P. Collins, The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI J. 83(2) (1986) 219-231.
DOI: 10.14359/10416
Google Scholar
[5]
F. J. Vecchio, Disturbed stress field model for reinforced concrete: formulation, Journal of Structural Engineering 126(9) (2000) 1070-1077.
DOI: 10.1061/(asce)0733-9445(2000)126:9(1070)
Google Scholar
[6]
S. Saatci, F. J. Vecchio, Nonlinear finite element modeling of reinforced concrete structures under impact loads, ACI Structural J. 106(5) (2009) 717-725.
DOI: 10.14359/51663112
Google Scholar
[7]
T. Hrynyk, F.J. Vecchio, Behavior of steel fiber-reinforced concrete slabs under impact load, ACI Structural J. 111(5) (2014) 1213-1224.
DOI: 10.14359/51686923
Google Scholar
[8]
H. Trommels, F.J. Vecchio, Towards simplified methods of analysis of impact on concrete structures, Transactions of International Conference – SMiRT 22, San Francisco, California USA (2013) Div-III.
Google Scholar
[9]
A. Lulec, F.J. Vecchio, Development of simplified analytical tools for impact and impulsive loading analysis of reinforced concrete slabs, Proc., Fifth International Workshop on Performance, Protection & Strengthening of Structures Under Extreme Loading, East Lansing, Michigan USA (2015).
Google Scholar
[10]
R. G Selby, Three-dimensional constitutive relations for reinforced concrete, Thesis for Doctor of Philosophy, Department of Civil Engineering, University of Toronto (1993) p.147.
Google Scholar
[11]
A. Vepsä, A. Saarenheimo, F. Tarallo, J. M. Rambach, N. Orbovic, Impact tests for IRIS 2010 benchmark exercise, Journal of Disaster Research 7(5) (2012) 619-628.
DOI: 10.20965/jdr.2012.p0619
Google Scholar
[12]
N. Orbovic, M. Elgoharyb, N. Leeb, A. Blahoianu, Tests on reinforced concrete slabs with pre-stressing and with transverse reinforcement under impact loading, Transactions of International Conference – SMiRT 20, Espo, Finland (2009) Div-V.
Google Scholar
[13]
N. Orbovic, A. Blahoianu, Tests on concrete slabs under hard missile impact to evaluate the influence of transverse reinforcement and pre-stressing on perforation velocity, Transactions of International Conference – SMiRT 21, New Delhi, India (2011).
DOI: 10.1016/j.nucengdes.2015.06.007
Google Scholar
[14]
J. Hoshikuma, K. Kawashima, K. Nagaya, A.W. Taylor, Stress-strain model for confined Reinforced concrete in bridge piers, ASCE Journal of Structural Engineering 123(5) (1997) 624-633.
DOI: 10.1061/(asce)0733-9445(1997)123:5(624)
Google Scholar
[15]
L.J. Malvar, J.E. Crawford, Dynamic Increase Factor for Steel Reinforcing Bars, Twenty-Eighth DDESB Seminar. Orlando, FL USA (1998).
Google Scholar
[16]
F. ElMohandes, F.J. Vecchio, User's manual of VecTor3, (2013).
Google Scholar
[17]
T. Hrynyk, Behaviour and modelling of reinforced concrete slabs and shells under static and dynamic loads, Thesis for Doctor of Philosophy, Department of Civil Engineering, University of Toronto (2013) pp.267-271.
Google Scholar
[18]
B. Luccioni, G. Aráoz, Erosion criteria for frictional materials under blast load, Mecánica Computacional, 30 (2011) 1809-1831.
Google Scholar