[1]
A. Sellier and A. Millard, Weakest link and localization WL2: a method to conciliate probabilistic and energetic scale effects in numerical models, European journal of environmental and civil engineering (2014).
DOI: 10.1080/19648189.2014.906368
Google Scholar
[2]
G. Quinn, Weibull effective volumes and surfaces for cylindrical rods loaded in flexure, J. Am. Ceram. Soc., 86.
Google Scholar
[3]
475-79 (2003).
Google Scholar
[3]
R.J. Torrent, A general relation between tensile strength and specimen geometry for concrete-like materials, Matériaux et construction, 10(58), 1977, pp.187-196.
DOI: 10.1007/bf02478688
Google Scholar
[4]
M. Van Vliet and J. Van Mier, Experimental investigation of size effect in concrete and sandstone under uniaxial tension, Engineering fracture mechanics 65 (2000), pp.165-188.
DOI: 10.1016/s0013-7944(99)00114-9
Google Scholar
[5]
P. Rossi, and X. WU, Scale effect on concrete in tension, Materials and structures 27 (1994), pp.437-444.
Google Scholar
[6]
M. Vořechovský Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics, International journal of solids and structures 44 (2007), pp.2715-2731.
DOI: 10.1016/j.ijsolstr.2006.08.019
Google Scholar
[7]
W. Weibull, A statistical representation of fatigue failures in solids, Proc., Roy. Inst. of techn. 27.
Google Scholar
[8]
C. Hoover and Z. Bažant, Universal size-shape effect law based on comprehensive concrete fracture tests, Journal of engineering mechanics 140 (2014), pp.473-479.
DOI: 10.1061/(asce)em.1943-7889.0000627
Google Scholar
[9]
C. Hoover, Z. Bažant, J. Vorel, R. Wendner and M. Hubler, Comprehensive concrete fracture tests: Description and results, Engineering fracture mechanics 114 (2013), pp.92-103.
DOI: 10.1016/j.engfracmech.2013.08.007
Google Scholar
[10]
X. Tang, Y. Zhou, C. Zhang and J. Shi, Study on the heterogeneity of concrete and its failure behavior using the equivalent probabilistic model, Journal of materials in civil engineering 2011; 23: 402-13.
DOI: 10.1061/(asce)mt.1943-5533.0000179
Google Scholar
[11]
N. Arioglu, C. Girgin and E. Arioglu, Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and its Application in strength Criterion, ACI Materials Journal-American Concrete Institute- Technical paper, (103-M03) (2006).
DOI: 10.14359/15123
Google Scholar
[12]
P. Danzer, J. Supancic and T. Pascual, Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics, Engineering Fracture Mechanics 74 (2007), p.2919–2932.
DOI: 10.1016/j.engfracmech.2006.05.028
Google Scholar
[13]
J.L. Clément, Interface acier-béton et comportement des structures en béton armé - Caractérisation – Modélisation', Thèse de doctorat de l, université Paris VI, (1987).
DOI: 10.51257/a-v1-c2319
Google Scholar
[14]
CEA, Description of the finite element code Cast3m (2015). http: /www-cast3m. cea. fr.
Google Scholar
[15]
Eurocode 2, Design of Concrete Structures, Part 1: General rules and rules for buildings, ENV 1992-1-1, (1991).
Google Scholar
[16]
J. Mazars, S. Grange and H. François, A new 3D damage model for concrete under monotonic, cyclic and dynamic loading, Materials and structures ISSN 1359-5997.
DOI: 10.1617/s11527-014-0439-8
Google Scholar