[1]
N. Burlion, F. Skoczylas, T. Dubois. Induced anisotropic permeability due to drying of concrete. Cement and Concrete Research, Elsevier (2003). 33 (5) 679-687.
DOI: 10.1016/s0008-8846(02)01039-6
Google Scholar
[2]
V. Baroghel-Bouny, Caractérisation des pâtes de ciment et des bétons; méthodes, analyse, interprétations, Edition du Laboratoire Central des Ponts et Chausées, Paris, (1994).
Google Scholar
[3]
U. Diederichs, U. M. Jumppanen, V. Penttala, Behaviour of high strength concrete at high temperature, Espoo: Helsinki University of Technology, Report 92, (1989).
Google Scholar
[4]
A. Noumowé, Effet de hautes temperatures (20-600 °C) sur le béton. Cas particulier du béton à hautes performance, Thèse de Doctorat, INSA Lyon, (1995).
Google Scholar
[5]
M. Choinska, A. Khelidj, G. Chatzigeorgiou, G. Pijaudier-Cabot. Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cement and Concrete Research (2007). 37 (1) 79–88.
DOI: 10.1016/j.cemconres.2006.09.015
Google Scholar
[6]
M. Zeiml, R. Lackner, D. Leithner and J. Eberhardsteiner, Identification of residual gas-transport properties of concrete subjected to high temperatures. Cement and Concrete Research (2008). 38(5) 699–716.
DOI: 10.1016/j.cemconres.2008.01.005
Google Scholar
[7]
F. Grondin, H. Dumontet, A. Ben Hamida and H. Boussa. Micromechanical contributions to the behaviour of cement-based materials: Two-scale modelling of cement paste and concrete in tension at high temperatures, Cement and concrete composites (2010).
DOI: 10.1016/j.cemconcomp.2010.11.004
Google Scholar
[8]
V. Picandet, A. Khelidj, B. Hervé. Crack effects on gas and water permeability of concretes. Cement and Concrete Research (2009). 39(6) 537‑47.
DOI: 10.1016/j.cemconres.2009.03.009
Google Scholar
[9]
A. Akhavan, S. Seyed-Mohammad-Hadi and R. Farshad. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cement and Concrete Research (2012); 42(2) 313‑20.
DOI: 10.1016/j.cemconres.2011.10.002
Google Scholar
[10]
G. Rastiello, C. Boulay, S. Dal Pont, JL Tailhan, P. Rossi. Real-time water permeability evolution of a localized crack in concrete under loading. Cement and Concrete Research (2014). 56 20‑28.
DOI: 10.1016/j.cemconres.2013.09.010
Google Scholar
[11]
Z. P. Bazant and W. Thonghutai, Pore pressure and drying of concrete at high temperature, J. Eng. Mech. Div. ASCE (1978). 104 1059-1079.
Google Scholar
[12]
D. Gawin, C. Alonso, C. Andrade, C. E. Majorana and F. Pesavento, Effect of damage on permeability and hygro-thermel behaviour of HPCs at elevated temperatures: Part 1. Experimental results, Computers and Concrete (2005). 2(3) 189-202.
DOI: 10.12989/cac.2005.2.3.189
Google Scholar
[13]
H. Darcy. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris. 647 p. & atlas, 1856.
Google Scholar
[14]
RILEM TC 129-MHT, Test methods for mechanical properties of concrete at high temperatures, Part 1 Introduction, Part 2 Stress-strain relation, Part 3 Compressive strength, Part 4 Tensile strength, Part 5 Modulus of elasticity, Part 6 Thermal strain, Part 7 Transient creep, Part 8 Steady-state creep, Part 9 Shrinkage, Part 10 Restraint, Part 11 Relaxation.
DOI: 10.3403/30308696
Google Scholar
[15]
L. J. Klinkenberg, The permeability of porous media to liquid and gaz, American Petroleum Institute, Drilling and Production Practice, 1941, pp.200-213.
Google Scholar