Modelling Basic Creep of Concrete at Elevated Temperatures and Stresses

Article Preview

Abstract:

The prestressed concrete confinement vessel is the third and last barrier in Nuclear Power Plants (NPP). In case of a severe accident (loss of cooling agent of the reactor for instance), pressure and temperature will increase in the nuclear vessel (0,5 MPa and 180°C during 2 weeks). Due to elevated temperatures, the evolution of basic creep will be accelerated. In this case, due to internal pressure, some tensile stresses could appear in specific parts of the structure and induce cracking. The modelling of basic creep and its couplings with temperature is very important for the safety of the structure (tightness of the concrete vessel). Here we present a model considering the following elements: a coupling between creep and damage is introduced, kinetics of basic creep is affected by temperature by the means of an Arrhenius thermo-activation, damage due to the increase of temperature is taken into account. The model is compared with the available experimental results. This work is a part of the MACENA project.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

879-884

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Muller, I. Anders, R. Breiner, M. Vogel, « Concrete: treatment of types and properties in fib Model Code 2010 », Structural Concrete 14 (2013), No. 4.

DOI: 10.1002/suco.201200048

Google Scholar

[2] J.M. Torrenti, R. Le Roy, Analysis and modelling of basic creep, Concreep 10 conference, Vienna, (2015).

DOI: 10.1061/9780784479346.165

Google Scholar

[3] A. Sellier, S. Multon, L. Buffo-Lacarrière, T. Vidal, X. Bourbon, G. Camps, Concrete creep modelling for structural applications: non-linearity, multiaxiality, hydration, temperature and drying effects, Cement and Concrete Research, Volume 79, January 2016, Pages 301–315.

DOI: 10.1016/j.cemconres.2015.10.001

Google Scholar

[4] H Rüsch, Researches toward a general flexural theory for structural concrete, ACI Journal, 1960, vol. 32, N°1, pp.1-28.

Google Scholar

[5] M.M. Smadi, F.O. Slate, Microcracking of high and normal strength concretes under short and long term loadings, ACI Materials Journal, 89, vol. 86, n°2, pp.117-127.

DOI: 10.14359/2264

Google Scholar

[6] P. Rossi, N. Godart, J. L. Robert, J. P. Gervais, D. Bruhat, Investigation of the basic creep of concrete by acoustic emission, Materials and Structures, Volume 27, Number 9, novembre (1994).

DOI: 10.1007/bf02473211

Google Scholar

[7] P. Rossi, J. -L. Tailhan, F. Le Maou, L. Gaillet, E. Martin, Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission, Cement and Concrete Research 42 (2012) 61–73.

DOI: 10.1016/j.cemconres.2011.07.011

Google Scholar

[8] Bazant Z. P., Xiang Y., Crack growth and life time of concrete under long time loading, Journal of Engineering Mechanics, vol. 123, n° 4, pp.350-358, (1997).

DOI: 10.1061/(asce)0733-9399(1997)123:4(350)

Google Scholar

[9] Berthollet A., Georgin J.F., Reynouard J.M., Fluage tertiaire du béton en traction, Revue européenne de Génie Civil, 2004, vol. 8, no2-3, pp.235-260.

DOI: 10.1080/12795119.2004.9692605

Google Scholar

[10] Li Z., Effective creep Poisson's ratio for damages concrete, International Journal of Fracture, vol. 66, pp.189-196, (1994).

Google Scholar

[11] Challamel N., Lanos C., Casandjian C., Creep damage modelling for quasi-brittle materials, European Journal of Mechanics A/Solids 24 (2005) 593–613.

DOI: 10.1016/j.euromechsol.2005.05.003

Google Scholar

[12] Mazzotti C., Savoia M., Non linear creep damage model for concrete under uniaxial compression, Journal of Engineering Mechanics, vol. 129, N°9, (2003).

DOI: 10.1061/(asce)0733-9399(2003)129:9(1065)

Google Scholar

[13] Bazant Z. P., Prasannan S., Solidification theory for concrete creep. I. Formulation, Journal of Engineering Mechanics, vol. 115, n° 8, pp.1691-1703, (1989).

DOI: 10.1061/(asce)0733-9399(1989)115:8(1691)

Google Scholar

[14] Mazars J., A description of micro and macroscale damage of concrete, Engineering Fracture Mechanics, vol. 25, pp.729-737, (1986).

DOI: 10.1016/0013-7944(86)90036-6

Google Scholar

[15] M. Omar, G. Pijaudier-Cabot, A. Loukili, Etude comparative du couplage endommagement – fluage, Revue Française de Génie Civil, Vol. 8, pp.457-482, (2004).

DOI: 10.1080/12795119.2004.9692615

Google Scholar

[16] Reviron N., Etude du fluage des bétons en traction. Application aux enceintes de confinement des centrales nucléaires à eau sous pression., thèse de doctorat de l'ENS de Cachan (in French), (2009).

DOI: 10.1051/jtsfen/2014exp21

Google Scholar

[17] J. M. Torrenti, V. H. Nguyen, H. Colina, F. Le Maou, F. Benboudjema, F. Deleruyelle, Coupling between leaching and creep of concrete, Cement and concrete research, 38 (2008) 816–821.

DOI: 10.1016/j.cemconres.2008.01.012

Google Scholar

[18] J.M. Torrenti, T. de Larrard, F. Benboudjema, Tertiary Creep: A Coupling Between Creep and Damage - Application to the Case of Radioactive Waste Disposal, in Damage Mechanics of Cementitious Materials and Structures, edited by Gilles Pijaudier-Cabot et Frédéric Dufour, Wyley, 2011, p.183.

DOI: 10.1002/9781118562086.ch7

Google Scholar

[19] Benboudjema F., Meftah F., Torrenti J. M., Interaction between drying, shrinkage, creep and cracking phenomena in concrete, Engineering Structures, vol. 27, pp.239-250, (2005).

DOI: 10.1016/j.engstruct.2004.09.012

Google Scholar

[20] T. Vidal, A. Sellier, W. Ladaoui, X. Bourbon, Effect of Temperature on the Basic Creep of High-Performance Concretes Heated between 20 and 80°C, Journal of Materials in Civil Engineering, 2015, 27(7).

DOI: 10.1061/(asce)mt.1943-5533.0001063

Google Scholar

[21] Z.P. Bazant, G. Cusatis, L. Cedolin, Temperature Effect on Concrete Creep Modeled by Microprestress-Solidification Theory, Journal of Engineering Mechanics, Vol. 130, No. 6, June 1, (2004).

DOI: 10.1061/(asce)0733-9399(2004)130:6(691)

Google Scholar

[22] F. Benboudjema, J. -M. Torrenti, Early-age behaviour of concrete nuclear containments, Nuclear Engineering and Design 238 (2008) 2495–2506.

DOI: 10.1016/j.nucengdes.2008.04.009

Google Scholar

[23] A.B. Hauggaard, L. Damkilde, P.F. Hansen, Transitional thermal creep of early age concrete, J. Eng. Mech., 125 (4) (1999), p.465–468.

DOI: 10.1061/(asce)0733-9399(1999)125:4(458)

Google Scholar

[24] H. Cagnon, T. Vidal, A. Sellier, G. Camps, Influence of water and temperature on long term mechanical behaviour of high performance concrete, Nuwcem 2014 - 2nd International Symposium on Cement-based Materials for Nuclear Wastes, Avignon, (2014).

Google Scholar