[1]
H. Muller, I. Anders, R. Breiner, M. Vogel, « Concrete: treatment of types and properties in fib Model Code 2010 », Structural Concrete 14 (2013), No. 4.
DOI: 10.1002/suco.201200048
Google Scholar
[2]
J.M. Torrenti, R. Le Roy, Analysis and modelling of basic creep, Concreep 10 conference, Vienna, (2015).
DOI: 10.1061/9780784479346.165
Google Scholar
[3]
A. Sellier, S. Multon, L. Buffo-Lacarrière, T. Vidal, X. Bourbon, G. Camps, Concrete creep modelling for structural applications: non-linearity, multiaxiality, hydration, temperature and drying effects, Cement and Concrete Research, Volume 79, January 2016, Pages 301–315.
DOI: 10.1016/j.cemconres.2015.10.001
Google Scholar
[4]
H Rüsch, Researches toward a general flexural theory for structural concrete, ACI Journal, 1960, vol. 32, N°1, pp.1-28.
Google Scholar
[5]
M.M. Smadi, F.O. Slate, Microcracking of high and normal strength concretes under short and long term loadings, ACI Materials Journal, 89, vol. 86, n°2, pp.117-127.
DOI: 10.14359/2264
Google Scholar
[6]
P. Rossi, N. Godart, J. L. Robert, J. P. Gervais, D. Bruhat, Investigation of the basic creep of concrete by acoustic emission, Materials and Structures, Volume 27, Number 9, novembre (1994).
DOI: 10.1007/bf02473211
Google Scholar
[7]
P. Rossi, J. -L. Tailhan, F. Le Maou, L. Gaillet, E. Martin, Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission, Cement and Concrete Research 42 (2012) 61–73.
DOI: 10.1016/j.cemconres.2011.07.011
Google Scholar
[8]
Bazant Z. P., Xiang Y., Crack growth and life time of concrete under long time loading, Journal of Engineering Mechanics, vol. 123, n° 4, pp.350-358, (1997).
DOI: 10.1061/(asce)0733-9399(1997)123:4(350)
Google Scholar
[9]
Berthollet A., Georgin J.F., Reynouard J.M., Fluage tertiaire du béton en traction, Revue européenne de Génie Civil, 2004, vol. 8, no2-3, pp.235-260.
DOI: 10.1080/12795119.2004.9692605
Google Scholar
[10]
Li Z., Effective creep Poisson's ratio for damages concrete, International Journal of Fracture, vol. 66, pp.189-196, (1994).
Google Scholar
[11]
Challamel N., Lanos C., Casandjian C., Creep damage modelling for quasi-brittle materials, European Journal of Mechanics A/Solids 24 (2005) 593–613.
DOI: 10.1016/j.euromechsol.2005.05.003
Google Scholar
[12]
Mazzotti C., Savoia M., Non linear creep damage model for concrete under uniaxial compression, Journal of Engineering Mechanics, vol. 129, N°9, (2003).
DOI: 10.1061/(asce)0733-9399(2003)129:9(1065)
Google Scholar
[13]
Bazant Z. P., Prasannan S., Solidification theory for concrete creep. I. Formulation, Journal of Engineering Mechanics, vol. 115, n° 8, pp.1691-1703, (1989).
DOI: 10.1061/(asce)0733-9399(1989)115:8(1691)
Google Scholar
[14]
Mazars J., A description of micro and macroscale damage of concrete, Engineering Fracture Mechanics, vol. 25, pp.729-737, (1986).
DOI: 10.1016/0013-7944(86)90036-6
Google Scholar
[15]
M. Omar, G. Pijaudier-Cabot, A. Loukili, Etude comparative du couplage endommagement – fluage, Revue Française de Génie Civil, Vol. 8, pp.457-482, (2004).
DOI: 10.1080/12795119.2004.9692615
Google Scholar
[16]
Reviron N., Etude du fluage des bétons en traction. Application aux enceintes de confinement des centrales nucléaires à eau sous pression., thèse de doctorat de l'ENS de Cachan (in French), (2009).
DOI: 10.1051/jtsfen/2014exp21
Google Scholar
[17]
J. M. Torrenti, V. H. Nguyen, H. Colina, F. Le Maou, F. Benboudjema, F. Deleruyelle, Coupling between leaching and creep of concrete, Cement and concrete research, 38 (2008) 816–821.
DOI: 10.1016/j.cemconres.2008.01.012
Google Scholar
[18]
J.M. Torrenti, T. de Larrard, F. Benboudjema, Tertiary Creep: A Coupling Between Creep and Damage - Application to the Case of Radioactive Waste Disposal, in Damage Mechanics of Cementitious Materials and Structures, edited by Gilles Pijaudier-Cabot et Frédéric Dufour, Wyley, 2011, p.183.
DOI: 10.1002/9781118562086.ch7
Google Scholar
[19]
Benboudjema F., Meftah F., Torrenti J. M., Interaction between drying, shrinkage, creep and cracking phenomena in concrete, Engineering Structures, vol. 27, pp.239-250, (2005).
DOI: 10.1016/j.engstruct.2004.09.012
Google Scholar
[20]
T. Vidal, A. Sellier, W. Ladaoui, X. Bourbon, Effect of Temperature on the Basic Creep of High-Performance Concretes Heated between 20 and 80°C, Journal of Materials in Civil Engineering, 2015, 27(7).
DOI: 10.1061/(asce)mt.1943-5533.0001063
Google Scholar
[21]
Z.P. Bazant, G. Cusatis, L. Cedolin, Temperature Effect on Concrete Creep Modeled by Microprestress-Solidification Theory, Journal of Engineering Mechanics, Vol. 130, No. 6, June 1, (2004).
DOI: 10.1061/(asce)0733-9399(2004)130:6(691)
Google Scholar
[22]
F. Benboudjema, J. -M. Torrenti, Early-age behaviour of concrete nuclear containments, Nuclear Engineering and Design 238 (2008) 2495–2506.
DOI: 10.1016/j.nucengdes.2008.04.009
Google Scholar
[23]
A.B. Hauggaard, L. Damkilde, P.F. Hansen, Transitional thermal creep of early age concrete, J. Eng. Mech., 125 (4) (1999), p.465–468.
DOI: 10.1061/(asce)0733-9399(1999)125:4(458)
Google Scholar
[24]
H. Cagnon, T. Vidal, A. Sellier, G. Camps, Influence of water and temperature on long term mechanical behaviour of high performance concrete, Nuwcem 2014 - 2nd International Symposium on Cement-based Materials for Nuclear Wastes, Avignon, (2014).
Google Scholar