[1]
F. Chillè, A. Sala, F. Casadei, Containment of blast phenomena in underground electrical power plants, Advances in Engineering Software, 29 (1998) 7-12.
DOI: 10.1016/s0965-9978(97)00047-1
Google Scholar
[2]
Y. Lu, Z. Wang, K. Chong, A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations, Soil Dynamics and Earthquake Engineering, 25 (2005) 275-288.
DOI: 10.1016/j.soildyn.2005.02.007
Google Scholar
[3]
M.W. Gui, M.C. Chien, Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport - A parametric study, Geotechnical and Geological Engineering, 24 (2006) 227-248.
DOI: 10.1007/s10706-004-5723-x
Google Scholar
[4]
S. Kim, W. Jeong, D. Jeong, J. Seok, Numerical simulation of blasting at tunnel contour hole in jointed rock mass, Tunnelling and Underground Space Technology, 21 (2006) 6 p.
DOI: 10.1016/j.tust.2005.12.162
Google Scholar
[5]
V.R. Feldgun, A.V. Kochetkov, Y.S. Karinski, D.Z. Yankelevsky, Internal blast loading in a buried lined tunnel, International Journal of Impact Engineering, 35 (2008) 172-183.
DOI: 10.1016/j.ijimpeng.2007.01.001
Google Scholar
[6]
H. Liu, Dynamic analysis of subway structures under blast loading, Geotechnical and Geological Engineering, 27 (2009) 699-711.
DOI: 10.1007/s10706-009-9269-9
Google Scholar
[7]
H. Liu, Soil-structure interaction and failure of cast-iron subway tunnels subjected to medium internal blast loading, Journal of Performance of Constructed Facilities, 26 (2012) 691-701.
DOI: 10.1061/(asce)cf.1943-5509.0000292
Google Scholar
[8]
H. Yu, Z. Wang, Y. Yuan, W. Li, Numerical analysis of internal blast effects on underground tunnel in soils, Structure and Infrastructure Engineering, (2016) 16 p. (Article in Press).
DOI: 10.1080/15732479.2015.1077260
Google Scholar
[9]
M. Colombo, P. Martinelli, M. di Prisco, A design approach for tunnels exposed to blast and fire, Structural Concrete, 16 (2015) 262-272.
DOI: 10.1002/suco.201400052
Google Scholar
[10]
M. di Prisco, C. Beltrami, P. Bonalumi, E. Cadoni, M. Colombo, L. Ferrara, P. Martinelli, Hpfrc tunnel segments to mitigate the risk of exceptional loads. fib symp., Tel Aviv, Israel, (2013).
Google Scholar
[11]
G. Tiberti, G. Plizzari, Tunnel linings of fiber reinforced concrete combined with traditional reinforcement, In 7th Int. Symp. on FRC: Design and Applications, Chennai, India, (2008).
Google Scholar
[12]
L. Liao, A. de la Fuente, S. Cavalaro, A. Aguado, Design of FRC tunnel segments considering the ductility requirements of the Model Code 2010, Tunn. Undergr. Space Tech. 47 (2015) 200-210.
DOI: 10.1016/j.tust.2015.01.006
Google Scholar
[13]
fib Model Code for Concrete Structures 2010. fib, International Federation for Structural Concrete, Ernst & Sohn, Berlin, (2013).
DOI: 10.1002/9783433604090
Google Scholar
[14]
G. Zani, High Performance Cementitious Composites for sustainable roofing panels. PhD thesis, Politecnico di Milano, (2013).
Google Scholar
[15]
T. Groeneweg, Shield driven tunnels in ultra high strength concrete. Master's thesis, Delft University of Technology, (2007).
Google Scholar
[16]
Abaqus Analysis User's Manual, version 6. 12, vol. 2. Technical report, Simulia, (2012).
Google Scholar
[17]
P. Janßen, Load capacity of segment joints. PhD thesis, Braunschweig University of Technology, (1983).
Google Scholar
[18]
D. Hordijk, Local approach to fatigue of concrete. PhD thesis. Delft, Delft University of technology, (1991).
Google Scholar
[19]
M. di Prisco, M. Colombo, D. Dozio, Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14 (2013) 342–361.
DOI: 10.1002/suco.201300021
Google Scholar
[20]
EN 1992-1-2: Eurocode 2: Design of concrete structures – Part 1-2: General rules – Structural fire design. European Committee for Standardization, Brussels, (2004).
Google Scholar
[21]
M. Colombo, M. di Prisco, R. Felicetti, Mechanical Properties of Steel Fibre Reinforced Concrete Exposed at High Temperatures, Mater. Struct., 43 (2010) 475–491.
DOI: 10.1617/s11527-009-9504-0
Google Scholar
[22]
A. Caverzan, M. Colombo, M. di Prisco, S. Lapolla, High Performance steel fibre reinforced concrete: Residual behaviour at high temperature, In Proc. of PROTECT 2009, Hayama, Japan, (2009).
DOI: 10.1617/s11527-014-0401-9
Google Scholar
[23]
UFC 3-340-02: Unified Facilities Criteria (UFC) - Structures to Resist the Effects of Accidental Explosions – Dept. Of Defense United States of America, December (2008).
DOI: 10.1061/41171(401)127
Google Scholar
[24]
P. Bonalumi, M. Colombo, M. di Prisco, C. Zambelli, Repeatibility of small charge detonation in pipes, In Proc. of MABS21-Military Aspects of Blast and Shock, Jerusalem, Israel, Oct. (2010).
Google Scholar