Structural and Energy State of Electro-Explosive Aluminum Nanopowder

Article Preview

Abstract:

Using XRD method it was revealed that in the stress-strain state of Al nanopowder lattice a non-significant amount of energy was stored (~0.385 J/g). Nevertheless, according to the data obtained by differential thermal analysis (DTA) the total amount of stored energy in the nanopowder was 348 J/g. The estimated value might be caused by the significant contribution of nanoparticles surface energy, which cannot be detected by means of XRD method. However, the method proposed in the paper can be applied to estimate changes in the structural and energy states of the lattice for nanoparticles or another micro-and nanopowders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-219

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.H. Hunt, New directions in aluminum-based P/M materials for automotive applications, Inter. J. Powd. Metal. 36 (2000) 50-56.

Google Scholar

[2] F.V. Beaumont, Aluminum P/M: Past, present and future, Inter. J. Powd. Metal. 6 (2000) 41-44.

Google Scholar

[3] A.P. Ilyin, L.O. Root, A.V. Mostovshchikov, The Influence of Aluminium Nanopowder Density on the Structure and Properties of its Combustion Products in Air, Key Eng. Mat. 685 (2016) 521-524.

DOI: 10.4028/www.scientific.net/kem.685.521

Google Scholar

[4] A. Mostovshchikov, A. Ilyin, I. Zabrodina, Morphology of Aluminum Nanopowder Combustion Products in a Magnetic Field in Air, Key Eng. Mat. 685 (2016) 516-520.

DOI: 10.4028/www.scientific.net/kem.685.516

Google Scholar

[5] T.A. Khabas, Solid-phase synthesis and sintering in oxide-metal mixtures of highly dispersed powders, Glass and Ceramics. 59 (2002) 404–408.

Google Scholar

[6] Chun-Nan Lin, Shyan-Lung Chung, Combustion synthesis of aluminum nitride powder using additives, J. Mater. Res. 16 (2001) 2200–2208.

DOI: 10.1557/jmr.2001.0302

Google Scholar

[7] Shyan Lung Chung, Chun Hung Lai, Combustion Synthesis of Aluminum Nitride: A Review, Key Eng. Mat. 521 (2012) 101–111.

Google Scholar

[8] A. Wilmański, M. Bućko, Z. Pędzich, J. Szczerba, Salt-Assisted SHS Synthesis of Aluminium Nitride Powders for Refractory Applications, J. Mater. Sci. Chem. Eng. 2 (2014) 26–31.

DOI: 10.4236/msce.2014.210004

Google Scholar

[9] A.P. Il'in, A.V. Mostovshchikov, and L.O. Root, Growth of Aluminum Nitride Single Crystals under Thermal Explosion Conditions, Tech. Phys. Lett. 37 (2011) 965–966.

DOI: 10.1134/s1063785011100208

Google Scholar

[10] A.A. Gromov, U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim, (2014).

DOI: 10.1002/9783527680696

Google Scholar

[11] A.A. Gromov, L.N. Chukhlomina, Nitride Ceramics: Combustion Synthesis, Properties and Applications, Wiley-VCH, Weinheim, (2014).

Google Scholar

[12] А.P. Il'in, L.O. Root, and A.V. Mostovshchikov, The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178-1180.

DOI: 10.1134/s1063784212080129

Google Scholar

[13] A.V. Mostovshchikov, A.P. Ilyin, A.A. Azanov, I.S. Egorov, The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam, Key Eng. Mat. 685 (2016) 639-642.

DOI: 10.4028/www.scientific.net/kem.685.639

Google Scholar

[14] A.V. Mostovshchikov, A.P. Il'in, P. Yu. Chumerin, Yu.G. Yushkov, V.A. Vaulin, B.A. Alekseev, The Influence of Microwave Radiation on the Thermal Stability of Aluminum Nanopowder, Tech. Phys. Lett. 42 (2016) 344–346.

DOI: 10.1134/s1063785016040118

Google Scholar

[15] A.V. Korshunov, Influence of dispersion aluminum powders on the regularities of their interaction with nitrogen, Russ. J. Phis . Chem. 85 (2011) 1202-1210.

DOI: 10.1134/s0036024411070156

Google Scholar

[16] K. Hauffe, Reactions in and on solids, U.S. Atomic Energy Commission, Division of Technical Information (1962).

Google Scholar

[17] W.W. Wendlandt, Thermal Methods of Analysis. NY, John Wiley & Sons (1974).

Google Scholar

[18] J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics. New York, USA, Hemisphere Publishing Corp. (1989).

Google Scholar

[19] A.P. Il'in, A.V. Mostovshchikov, and N.A. Timchenko, Phase Formation Sequence in Combustion of Pressed Aluminum Nanopowder in Air Studied by Synchrotron Radiation, Combust. Explo. Shock. 49 (2013) 320–324.

DOI: 10.1134/s0010508213030088

Google Scholar

[20] M.T. Swihart, L. Catorie, Termochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculation, Combust. Flame. 121 (2000) 210–222.

DOI: 10.1016/s0010-2180(99)00128-5

Google Scholar

[21] Ch. Genzel, A Study of X-Ray Residual Stress Gradient Analysis in Thin Layers with Strong Fibre Texture, Phys. stat. sol. (a). 165 (1998) 347–360.

DOI: 10.1002/(sici)1521-396x(199802)165:2<347::aid-pssa347>3.0.co;2-k

Google Scholar

[22] M.G. Ostapenko, L.L. Meisner, M.A. Zakharova, E.Y. Gudimova, X-ray analysis of the structure-phase states of the tantalum coating on NiTi substrate treated by electron beams, Materials Today: Proceedings. 2 (2015) S901-S904.

DOI: 10.1016/j.matpr.2015.07.427

Google Scholar

[23] V.V. Smirnova, A.P. Ilyin, A.S. Brichkov, A.V. Zabolotskaya, The Electric Field and Ultrasonic Treatment Casing of Titanium Dioxide, Key Eng. Mat. 670 (2016) 3-8.

DOI: 10.4028/www.scientific.net/kem.670.3

Google Scholar

[24] A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735-738.

DOI: 10.4028/www.scientific.net/kem.685.735

Google Scholar

[25] E.M. Ustinova, Y.A. Oskina, E.G. Pakrieva, Investigation of the Influence of Matrix Components of Gold Mineral Resources on the Electrochemical Determination of Pt and Re, Key Eng. Mat. 685 (2016) 748-753.

DOI: 10.4028/www.scientific.net/kem.685.748

Google Scholar

[26] E.B. Golushkova, A.P. Ilyin, A.V. Mostovshchikov, Extraction of Oil Heteroatomic Compounds Using Metal Powders, Key Eng. Mat. 685 (2016) 743-747.

DOI: 10.4028/www.scientific.net/kem.685.743

Google Scholar

[27] D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical Activity of Methionine at Graphite Electrode Modified with Gold Nanoparticles, Key Eng. Mat. 685 (2016) 563-568.

DOI: 10.4028/www.scientific.net/kem.685.563

Google Scholar