[1]
W.H. Hunt, New directions in aluminum-based P/M materials for automotive applications, Inter. J. Powd. Metal. 36 (2000) 50-56.
Google Scholar
[2]
F.V. Beaumont, Aluminum P/M: Past, present and future, Inter. J. Powd. Metal. 6 (2000) 41-44.
Google Scholar
[3]
A.P. Ilyin, L.O. Root, A.V. Mostovshchikov, The Influence of Aluminium Nanopowder Density on the Structure and Properties of its Combustion Products in Air, Key Eng. Mat. 685 (2016) 521-524.
DOI: 10.4028/www.scientific.net/kem.685.521
Google Scholar
[4]
A. Mostovshchikov, A. Ilyin, I. Zabrodina, Morphology of Aluminum Nanopowder Combustion Products in a Magnetic Field in Air, Key Eng. Mat. 685 (2016) 516-520.
DOI: 10.4028/www.scientific.net/kem.685.516
Google Scholar
[5]
T.A. Khabas, Solid-phase synthesis and sintering in oxide-metal mixtures of highly dispersed powders, Glass and Ceramics. 59 (2002) 404–408.
Google Scholar
[6]
Chun-Nan Lin, Shyan-Lung Chung, Combustion synthesis of aluminum nitride powder using additives, J. Mater. Res. 16 (2001) 2200–2208.
DOI: 10.1557/jmr.2001.0302
Google Scholar
[7]
Shyan Lung Chung, Chun Hung Lai, Combustion Synthesis of Aluminum Nitride: A Review, Key Eng. Mat. 521 (2012) 101–111.
Google Scholar
[8]
A. Wilmański, M. Bućko, Z. Pędzich, J. Szczerba, Salt-Assisted SHS Synthesis of Aluminium Nitride Powders for Refractory Applications, J. Mater. Sci. Chem. Eng. 2 (2014) 26–31.
DOI: 10.4236/msce.2014.210004
Google Scholar
[9]
A.P. Il'in, A.V. Mostovshchikov, and L.O. Root, Growth of Aluminum Nitride Single Crystals under Thermal Explosion Conditions, Tech. Phys. Lett. 37 (2011) 965–966.
DOI: 10.1134/s1063785011100208
Google Scholar
[10]
A.A. Gromov, U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim, (2014).
DOI: 10.1002/9783527680696
Google Scholar
[11]
A.A. Gromov, L.N. Chukhlomina, Nitride Ceramics: Combustion Synthesis, Properties and Applications, Wiley-VCH, Weinheim, (2014).
Google Scholar
[12]
А.P. Il'in, L.O. Root, and A.V. Mostovshchikov, The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178-1180.
DOI: 10.1134/s1063784212080129
Google Scholar
[13]
A.V. Mostovshchikov, A.P. Ilyin, A.A. Azanov, I.S. Egorov, The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam, Key Eng. Mat. 685 (2016) 639-642.
DOI: 10.4028/www.scientific.net/kem.685.639
Google Scholar
[14]
A.V. Mostovshchikov, A.P. Il'in, P. Yu. Chumerin, Yu.G. Yushkov, V.A. Vaulin, B.A. Alekseev, The Influence of Microwave Radiation on the Thermal Stability of Aluminum Nanopowder, Tech. Phys. Lett. 42 (2016) 344–346.
DOI: 10.1134/s1063785016040118
Google Scholar
[15]
A.V. Korshunov, Influence of dispersion aluminum powders on the regularities of their interaction with nitrogen, Russ. J. Phis . Chem. 85 (2011) 1202-1210.
DOI: 10.1134/s0036024411070156
Google Scholar
[16]
K. Hauffe, Reactions in and on solids, U.S. Atomic Energy Commission, Division of Technical Information (1962).
Google Scholar
[17]
W.W. Wendlandt, Thermal Methods of Analysis. NY, John Wiley & Sons (1974).
Google Scholar
[18]
J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics. New York, USA, Hemisphere Publishing Corp. (1989).
Google Scholar
[19]
A.P. Il'in, A.V. Mostovshchikov, and N.A. Timchenko, Phase Formation Sequence in Combustion of Pressed Aluminum Nanopowder in Air Studied by Synchrotron Radiation, Combust. Explo. Shock. 49 (2013) 320–324.
DOI: 10.1134/s0010508213030088
Google Scholar
[20]
M.T. Swihart, L. Catorie, Termochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculation, Combust. Flame. 121 (2000) 210–222.
DOI: 10.1016/s0010-2180(99)00128-5
Google Scholar
[21]
Ch. Genzel, A Study of X-Ray Residual Stress Gradient Analysis in Thin Layers with Strong Fibre Texture, Phys. stat. sol. (a). 165 (1998) 347–360.
DOI: 10.1002/(sici)1521-396x(199802)165:2<347::aid-pssa347>3.0.co;2-k
Google Scholar
[22]
M.G. Ostapenko, L.L. Meisner, M.A. Zakharova, E.Y. Gudimova, X-ray analysis of the structure-phase states of the tantalum coating on NiTi substrate treated by electron beams, Materials Today: Proceedings. 2 (2015) S901-S904.
DOI: 10.1016/j.matpr.2015.07.427
Google Scholar
[23]
V.V. Smirnova, A.P. Ilyin, A.S. Brichkov, A.V. Zabolotskaya, The Electric Field and Ultrasonic Treatment Casing of Titanium Dioxide, Key Eng. Mat. 670 (2016) 3-8.
DOI: 10.4028/www.scientific.net/kem.670.3
Google Scholar
[24]
A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735-738.
DOI: 10.4028/www.scientific.net/kem.685.735
Google Scholar
[25]
E.M. Ustinova, Y.A. Oskina, E.G. Pakrieva, Investigation of the Influence of Matrix Components of Gold Mineral Resources on the Electrochemical Determination of Pt and Re, Key Eng. Mat. 685 (2016) 748-753.
DOI: 10.4028/www.scientific.net/kem.685.748
Google Scholar
[26]
E.B. Golushkova, A.P. Ilyin, A.V. Mostovshchikov, Extraction of Oil Heteroatomic Compounds Using Metal Powders, Key Eng. Mat. 685 (2016) 743-747.
DOI: 10.4028/www.scientific.net/kem.685.743
Google Scholar
[27]
D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical Activity of Methionine at Graphite Electrode Modified with Gold Nanoparticles, Key Eng. Mat. 685 (2016) 563-568.
DOI: 10.4028/www.scientific.net/kem.685.563
Google Scholar