[1]
A.V. Gusarov, Irradiation transfer in layers of metallic powders during laser forming, Kvantovaya electronika (in Russian). 40 (5) (2010) 451-459.
Google Scholar
[2]
I. Yadroitsev, I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape, Physics Procedia. 5 (2010) 551–560.
DOI: 10.1016/j.phpro.2010.08.083
Google Scholar
[3]
S.N. Kostenkov, E.V. Kharanzhevskii, Dispersion and absorption of laser irradiation during their transmission through superdispersed powder media (in Russian), Vestnik Udmurtskogo Universiteta. ser. fizicheskaya (1) (2011) 13-24.
Google Scholar
[4]
H. Bikas, P. Stavropoulos, Chryssolouris Additive manufacturing methods and modeling approaches: a critical review, Int.J. dv. Manuf. Technol. 83 (2016) 389-405.
DOI: 10.1007/s00170-015-7576-2
Google Scholar
[5]
Nicholas P. Lavery, Stephen G.R. Brown, Johann Sienz, John Cherry, Fawzi Belblidia, A review of Computational Modeling of Additive Layer Manufacturing – multi-scale and multi-physics, Sustainable Design and Manufacturing. (2014) 651-673.
Google Scholar
[6]
M.A. Khimich, E.A. Parilov, Zh.G. Kovalevskaya, Yu.P. Sharkeev, Investigation of high- external influences on structural heredity of the Ti-Nb alloy, IOP Conf. Series: Mater. Sci. Eng. 93 (2015) 012042.
DOI: 10.1088/1757-899x/93/1/012042
Google Scholar
[7]
K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, M. Calin, S. Scudino, L. Schultz, J. Eckert, A. Gebert, Production of Porous β-type Ti–40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing, Materials. 6 (2013).
DOI: 10.3390/ma6125700
Google Scholar
[8]
I.G. Dik, A.G. Knyazeva, Ignition of a thin film by radiant energy as optical properties vary during the reaction, Combustion, Explosion and Shock Waves. 26 (3) (1990) 251-255.
DOI: 10.1007/bf00751359
Google Scholar
[9]
I.G. Dik, A.G. Knyazeva, Ignition of a thin film by a beam of radiant energy, Combustion, Explosion and Shock Waves. 27 (6) (1991) 649-655.
DOI: 10.1007/bf00814503
Google Scholar
[10]
W. Pabst, E. Gregorová, G. Tichá, Journal of the European Ceramic Society. 27 (2-3) (2007) 479-482.
Google Scholar
[11]
Z. Zivcová, E. Gregorová et all, Journal of the European Ceramic Society. 2 (9) (2009) 347-353.
Google Scholar
[12]
A. Simshi, Direct laser sintering of metal powders: mechanism, kinetics and microstructural features, Materail Science and Engineering. A 428 (2006) 148-158.
DOI: 10.1016/j.msea.2006.04.117
Google Scholar
[13]
Francis Delannay, Jean-Michel Missiaen, Assessment of solid state and liquid phase sintering models by comparison of isothermal densification kinetics in W and W-Cu systems, Acta Materialia. 106 (2016) 22-31.
DOI: 10.1016/j.actamat.2015.12.041
Google Scholar
[14]
N.V. Bookrina, A.G. Knyazeva, I.L. Pobol Influence of kinetics shrinkage of powdwr layer on the formation regimes of the coating during electron beam surfacing, Physical mesomechanics. 7 (Special Issue, Part 2) (2004) 193-196.
Google Scholar
[15]
N.V. Bookrina, A.G. Knyazeva Numerical investigation of shrinkage kinetics of powder layer during electron beam treatment (in Russian), Fundamental problems of modern materials science, 4 (1) (2007) 13-17.
Google Scholar
[16]
I.S. Grigoriev, E.Z. Meylikhov eds. Physiсal values. Reference book, Energoatomizdat, Moscow, 1991 p.1232.
Google Scholar