Laser Monitors for High Speed Imaging of Plasma, Beam and Discharge Processes

Article Preview

Abstract:

The imaging results of different processes blocked from the observation by the intense background light are presented in this paper. Active optical systems based on high-frequency brightness amplifier are used to decrease the negative factor of the glare. The experimental and modeling results on obtaining high pulse repetition frequencies (PRF) (more than 100 kHz) of copper bromide vapor brightness amplifiers operating in a low input energy mode are shown. The use of metal vapor brightness amplifiers for visual non-destructive testing of fast processes obscured by the glare is also discussed. It has been shown that the imaging method proposed in this paper proves to be the most reliable to obtain the information about objects or processes in a real time mode using high PRF CuBr active media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-307

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sugioka, M. Meunier, A. Piqué, Laser Precision Microfabrication, Springer Series in Material Science, (2010).

DOI: 10.1007/978-3-642-10523-4

Google Scholar

[2] Colin E. Webb, Julian D. C. Jones, Handbook of Laser Technology: Applications. IoP Publishing, (2004).

Google Scholar

[3] O.I. Buzhinskij, N.N. Vasiliev, A.I. Moshkunov, I.A. Slivitskaya, A.A. Slivitsky, Copper vapor laser application for surface monitoring of divertor and first wall in ITER, Fus. Eng. and Design. 60 (2002) 141–155.

DOI: 10.1016/s0920-3796(01)00610-x

Google Scholar

[4] V.G. Prokoshev, D.V. Abramov, S.U. Danilov, S.I. Shishin, A.V. Chizhov, S.M. Arakelian, Real time diagnostics of the laser-induced thermochemical processes and nonlinear images on the surface of materials experiment and mathematical modeling, Las. phys. 11 (2011).

Google Scholar

[5] D.N. Astadzhov, N.K. Vuchkov, K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash and N.V. Sabotinov, Active optical systems with a copper bromide vapor amplifier, Sov. J. Quan. El. 4 (1988) 457-460.

DOI: 10.1070/qe1988v018n04abeh011761

Google Scholar

[6] G.S. Evtushenko, M.V. Trigub, F.A. Gubarev, T.G. Evtushenko, S.N. Torgaev, D.V. Shiyanov, Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting, Rev. of Scien. Instr. 3 (2014) 1-5.

DOI: 10.1063/1.4869155

Google Scholar

[7] V.O. Nekhoroshev, V.F. Fedorov, G.S. Evtushenko, S.N. Torgaev, Copper bromide laser with 700 kHz PRF, Quan. Electron. 10 (2012) 877–879.

DOI: 10.1070/qe2012v042n10abeh014897

Google Scholar

[8] M.V. Trigub, V.V. Platonov, K.V. Fedorov, G.S. Evtushenko, V.V. Osipov, CuBr laser for nanopowder production visualization, Atm. and Ocean. Opt. 3 (2016) 249–253 [in Russian].

DOI: 10.1134/s1024856016040151

Google Scholar