3D AlOOH/Fe Micro/Nanostructures: Facile Synthesis, Characterization and Application for Arsenic Removal

Article Preview

Abstract:

Novel 3D AlOOH/Fe micro/nanostructures were successfully synthesized by the reaction of Al/Fe binary metallic nanoparticles with water at 60°C and under atmospheric pressure. Al/Fe binary metallic nanopowder was produced by the method of simultaneous electric explosion of twisted aluminum and iron wires in an argon atmosphere. Produced 3D AlOOH/Fe structures were characterized by TEM, SEM, XRD, EDX, BET, and adsorption capacity towards As (V). The hard framework consisting of both the boehmite nanosheets and the nanosheets enriched with iron provides a large available surface and prevents the aggregation of the micro/nanostructures. The high adsorption capacity of 42 mg g-1 As (V) under static conditions allows obtained 3D AlOOH/Fe micro/nanostructures to be a promising material for the removal of arsenic from contaminated drinking water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

288-294

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.H. Wang, Q.L. Wei, Y.M. Huang, Preparation and adsorption properties of the biomimetic gama-alumina, Mater. Lett. 157 (2015) 67-69.

DOI: 10.1016/j.matlet.2015.05.119

Google Scholar

[2] C. Garcia-Saucedo, J.A. Field, L. Otero-Gonzalez, R. Sierra-Alvarez, Reyes, Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae, J. Hazard. Mater. 192 (2011) 1572-1579.

DOI: 10.1016/j.jhazmat.2011.06.081

Google Scholar

[3] C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, J. Cejka, Synthesis, characterization and catalytic applications of organized mesoporous aluminas, Catalysis Reviews-Science and Engineering, 50 (2008) 222-286.

DOI: 10.1002/chin.200934212

Google Scholar

[4] G.H. Qui, H. Huang, H. Genuino, N. Opembe, L. Stafford, S. Dharmarathna, S.L. Suib, Microwave-Assisted Hydrothermal Synthesis of Nanosized α-Fe2O3 for Catalysts and Adsorbents, J. Phys. Chem. 115 (2011) 19626-19631.

DOI: 10.1021/jp2067217

Google Scholar

[5] Y. Watanabe, T. Kasama, K. Fukushi, T. Ikoma, Y. Komatsu, J. Tanaka, Y. Moriyoshi, H. Yamada, Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption, Separat. Scie. Technol. 46 (2011) 818-824.

DOI: 10.1080/01496395.2010.535590

Google Scholar

[6] L.Q. Guo, P.R. Ye, J. Wang, F.F. Fu, Z.J. Wu, Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal, J. Hazard. Mater. 298 (2015) 28-35.

DOI: 10.1016/j.jhazmat.2015.05.011

Google Scholar

[7] J.R. Wen, M.H. Liu, C.Y. Mou, Synthesis of curtain-like crumpled boehmite and gamma-alumina nanosheets, Crystengcomm, 17 (2015) 1959-(1967).

DOI: 10.1039/c4ce02506g

Google Scholar

[8] Y. Liu, D. Ma, X.W. Han, X.H. Bao, W. Frandsen, D. Wang, D.S. Su, Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina, Mater. Lett. 62 (2008) 1297-1301.

DOI: 10.1016/j.matlet.2007.08.067

Google Scholar

[9] X.B. Wang, C.L. Zhan, B. Kong, X.G. Zhu, J. Liu, W.Z. Xu, W.P. Cai, H.T. Wang, Self-curled coral-like γ-Al2O3 nanoplates for use as an adsorbent, J. Colloid Interface Scie. 453 (2015) 244-251.

DOI: 10.1016/j.jcis.2015.03.065

Google Scholar

[10] Z.F. Zhu, S. Cheng, H. Liu, X.N. Dong, Y. Shi, Hydrothermal synthesis of hexagon nanosheets self-assembled 3D stalk-like alumina, Mater. Let. 123 (2014) 258-260.

DOI: 10.1016/j.matlet.2014.03.025

Google Scholar

[11] Z. Tang, J.L. Liang, X.H. Li, J.F. Li, H.L. Guo, Y.Q. Liu, C.G. Liu, Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route, J. Solid State Chem. 202 (2013) 305-314.

DOI: 10.1016/j.jssc.2013.03.049

Google Scholar

[12] P. Verma, A. Agarwal, V.K. Singh, Arsenic removal from water through adsorption-A Review, Recent Research Scie. Technol. 6 (2014) 219-226.

Google Scholar

[13] Z.Q. Li, J.C. Yang, K.W. Sui, N. Yin, Facile synthesis of metal-organic framework MOF-808 for arsenic removal, Mater. Lett. 160 (2015) 412–414.

DOI: 10.1016/j.matlet.2015.08.004

Google Scholar

[14] M. Zaib, M.M. Athar, A. Saeed, U. Farooq, Electrochemical determination of inorganic mercury and arsenic-A review, Biosensors Bioelectron. 74 (2015) 895-908.

DOI: 10.1016/j.bios.2015.07.058

Google Scholar

[15] D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater. 142 (2007) 1-53.

DOI: 10.1016/j.jhazmat.2007.01.006

Google Scholar

[16] X.Y. Yu, T. Luo, Y. Jia, Y.X. Zhang, J.H. Liu, X.J. Huang, Porous Hierarchically Micro-/Nanostructured MgO: Morphology Control and Their Excellent Performance in As(III) and As(V) Removal, J. Phys. Chem. 115 (2011) 22242-22250.

DOI: 10.1021/jp207572y

Google Scholar

[17] Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang, F. Nie, C.M. Liu, S.H. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress Mater. Scie. 60 (2014) 208-337.

DOI: 10.1016/j.pmatsci.2013.09.003

Google Scholar

[18] C. Y. Han, H.Y. Li, H.P. Pu, H.L. Yu, L. Deng, S. Huang, Y.M. Luo, Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(V), Chem. Engineer. J. 217 (2013) 1-9.

DOI: 10.1016/j.cej.2012.11.087

Google Scholar

[19] I. Danish, I.A. Qazi, A. Zeb, A. Habib, M.A. Awan, Z. Khan, Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass, J. Nanomater. 2013 (2013) Article ID 873694.

DOI: 10.1155/2013/873694

Google Scholar

[20] Y.Q. Wang, R.M. Cheng, Z. Wen, L. Zhao, Investigation on the room-temperature preparation and application of chain-like iron flower and its ramifications in wastewater purification, Chem. Engineer. J. 203 (2012) 277-284.

DOI: 10.1016/j.cej.2012.06.063

Google Scholar

[21] P.R. Grossl, M. Eick, D.L. Sparks, S. Goldberg, C.C. Ainsworth, Arsenate and Chromate Retention Mechanisms on Goethite. 2. Kinetic Evaluation Using a Pressure-Jump Relaxation Technique Environ. Sci. Technol. 31 (1997) 321-326.

DOI: 10.1021/es950654l

Google Scholar

[22] S. Liu, S. Kang, G. Wang, H. Zhao, W. Cai, Micro/nanostructured porous Fe–Ni binary oxide and its enhanced arsenic adsorption performances, Coll. Interface Scie. 458 (2015) 94–102.

DOI: 10.1016/j.jcis.2015.07.038

Google Scholar