A User Defined Material Model for the Simulation of Impact Induced Damage in Composite

Article Preview

Abstract:

Low velocity impacts induce concurring failure phenomena in unidirectional fiber reinforced composites. Hence a refined methodology able to predict the different failure modes and their interaction is mandatory to correctly predict the damage onset and evolution. Indeed, intra-laminar damage and inter-laminar damage often take place concurrently, causing a significant strength reduction up to composite structure collapse. In this paper, a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts by introducing a user defined material model in the FEM code ABAQUS. The proposed 3-D numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-17

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Abrate. Impact on composite structures. Cambridge (UK): Cambridge University Press (1998).

Google Scholar

[2] C.S. Lopes, O. Seresta, Y. Coquet, Z. Gnrdal, P.P. Camanho, B. Thuis. Low-velocity impact damage on dispersed stacking sequence laminates. Part I: experiments. Compos Sci Technol 2009; 69: 926-36.

DOI: 10.1016/j.compscitech.2009.02.009

Google Scholar

[3] C. Li, N. Hu, Y. Yin, H. Sekine, H. Fukunaga. Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Composites Part A 2002; 33: 1055-62.

DOI: 10.1016/s1359-835x(02)00081-7

Google Scholar

[4] F. Aymerich, F. Dore, P. Priolo. Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos Sci Technol 2009; 69: 1699-709.

DOI: 10.1016/j.compscitech.2008.10.025

Google Scholar

[5] M.R. Wisnom. Modelling discrete failures in composites with interface elements. Compos A Appl Sci Manuf 2010; 41(7): 795-805.

DOI: 10.1016/j.compositesa.2010.02.011

Google Scholar

[6] A. Riccio, G. Di Felice, S. Saputo, F. Scaramuzzino. A Numerical Study on Low velocity impact induced damage in stiffened composite panels. Journal of Computational Simulation and Modeling 2013; 3(1): 044-047.

DOI: 10.1016/j.proeng.2014.11.148

Google Scholar

[7] P.P. Camanho, C.G. Davila, M.F. De Moura. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 2003; 37(16): 1415–38.

DOI: 10.1177/0021998303034505

Google Scholar

[8] A.M. Amaro, J.B. Santos, J.S. Cirne. Delamination depth in composites laminates with interface elements and ultrasound analysis. Strain 2011; 47(2): 138–45.

DOI: 10.1111/j.1475-1305.2008.00491.x

Google Scholar

[9] C. Bouvet, N. Hongkarnjanakul, S. Rivallant, J.J. Barrau. Discrete impact modeling of inter- and intra-laminar failure in composites. In: S. Abrate, B. Castanié, Y.D.S. Rajapakse, editors. Dynamic failure of composite and sandwich structures. Dordrecht: Springer; 2013: 339–92.

DOI: 10.1007/978-94-007-5329-7_8

Google Scholar

[10] P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila. A continuum damage model for composite laminates: Part I – constitutive model. Mech Mater 2007; 39: 897–908.

DOI: 10.1016/j.mechmat.2007.03.005

Google Scholar

[11] Z. Hashin. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics 1980; 47: 329-334.

DOI: 10.1115/1.3153664

Google Scholar

[12] A. Puck, H. Schurmann. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology 1998; 58: 1045-1067.

DOI: 10.1016/s0266-3538(96)00140-6

Google Scholar

[13] A. Sellitto, R. Borrelli, F. Caputo, A. Riccio, F. Scaramuzzino. Methodological approaches for kinematic coupling of non-matching finite element meshes. Procedia Engineering 2011; 10: 421-426.

DOI: 10.1016/j.proeng.2011.04.071

Google Scholar