[1]
H. Hao, Z. Liu, F. Zhao, W. Li, W. Huang, Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles, Energy, 91(2015) 151-159.
DOI: 10.1016/j.energy.2015.08.054
Google Scholar
[2]
O. Fakir, L. Wang, D. Balint, J. Dear, J. Lin, Numerical study of the solution heat treatment, forming and in-die quenching (HFQ) price on AA 5754, Int. J. Mach. Tool Manu. 87 (2014) 39-48.
DOI: 10.1016/j.ijmachtools.2014.07.008
Google Scholar
[3]
Davis, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, University of California, Davis, (2010).
Google Scholar
[4]
W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A. 280 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[5]
P. Lequeu, P. Lassince, T. Warner and G.M. Raynaud, Engineering for the future: weight saving and cost reduction initiatives, Aircr. Eng. Aerosp. Tec. 73 (2001) 147-159.
DOI: 10.1108/00022660110386663
Google Scholar
[6]
I.J. Polmear, Light Alloys: Metall. Light Met., third ed., Wiley Press, New York, (1995).
Google Scholar
[7]
M. Mohamed, J. Foster, J. Lin, Solution heat treatment in HFQ process, Steel Res. Int., 11 (2008) 160-167.
Google Scholar
[8]
M.F. Novella, A. Ghiotti, S. Bruschi, P.F. Bariani, Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars, J. Mater. Process. Tech. 222 (2015) 259-267.
DOI: 10.1016/j.jmatprotec.2015.01.030
Google Scholar
[9]
R.P. Garrett, J. Lin, T.A. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling, Int. J. Plasticity. 21 (2005) 1640-1657.
DOI: 10.1016/j.ijplas.2004.11.002
Google Scholar
[10]
C. M Abreu, M.J. Cristobal, R. Figueroa, G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation, Appl. Surf. Sci. 327 (2015) 51-61.
DOI: 10.1016/j.apsusc.2014.11.111
Google Scholar
[11]
S.V. Emani, J. Benedyk, P. Nash, D. Chen, Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions, J. Mater. Sci. 44 (2009) 6384–6391.
DOI: 10.1007/s10853-009-3879-8
Google Scholar
[12]
X. Fan, Z. He, S. Yuan, P. Lin, Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies, Mater. Sci. Eng. A. 587 (2013) 221-227.
DOI: 10.1016/j.msea.2013.08.059
Google Scholar
[13]
M.J. Starink, N. Gao, L. Davin, J. Yan, A. Gerezo, Room temperature precipitation in quenched Al–Cu–Mg alloys: a model for the reaction kinetics and yield strength development, Philos. Mag. 13 (2005) 1395-1417.
DOI: 10.1080/14786430412331333374
Google Scholar
[14]
X. Liu, K. Ji, O. Fakir, J. Liu, Q. Zhang, L. Wang, Determination of Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075. 4th international Conference on New Forming Technology, (2015).
DOI: 10.1051/mfreview/2016017
Google Scholar
[15]
Y. Xiao, Q. Pan, W. Li, X. Liu, Y. He, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy, Mater. Design 32 (2011) 2149-2156.
DOI: 10.1016/j.matdes.2010.11.036
Google Scholar
[16]
X. Huang, Q. Pan, B. Li, Z. Liu, Z. Huang, Z. Yin, Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Ma-Zr alloy sheet with trance amount of Sc, J. Alloy. Compd. 650 (2015) 805-820.
DOI: 10.1016/j.jallcom.2015.08.011
Google Scholar
[17]
J. Lin, T.A. Dean, R.P. Garrett, A process in forming high strength and complex-shaped Al-alloy sheet components, British Patent, UK, (2008).
Google Scholar
[18]
Z. Duan, B. He, Extended Reynolds analogy for slip and transition flow heat transfer in micro channels and nanochannels, Int. J. Heat Mass Transf. 56 (2014) 25-30.
DOI: 10.1016/j.icheatmasstransfer.2014.04.022
Google Scholar
[19]
P.T. Tsilingiris, Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy, Sol. Energy. 84 (2010) 308-317.
DOI: 10.1016/j.solener.2009.11.012
Google Scholar
[20]
A. Bejan, Convection Heat Transfer, fourth ed., John Wiley & Sons, New Jersey, (2013).
Google Scholar
[21]
D. Mclean, Understanding Aerodynamics: Arguing from the Real Physics, second ed., John Wiley & Sons, Chichester, (2012).
Google Scholar
[22]
A. Myerson, Handbook of Industrial Crystallization, Butterworth-Heinemann, second ed., Oxford, (2002).
Google Scholar
[23]
J. Tu, K. Inthavong, G. Ahmadi, Computational Fluid and Particle Dynamics in the Human Respiratory System, Springer Sci. &Business Media, (2012).
Google Scholar
[24]
S. Gang and C. Alfred, Early-stage precipitation in Al–Zn–Mg–Cu alloy, Acta Mater., 52(2004) 4503-4516.
DOI: 10.1016/j.actamat.2004.06.025
Google Scholar
[25]
R. Ferragut, A. Somoza, A. Tolley, I. Torriani, Precipitation kinetics in Al–Zn–Mg commercial alloys, J. Mater. Process. Technol., 41(2003)35-40.
DOI: 10.1016/s0924-0136(02)01044-0
Google Scholar
[26]
L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel et al., GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta Mater. 49 (2001) 3443-3451.
DOI: 10.1016/s1359-6454(01)00251-8
Google Scholar