Determination of Processing Windows for the Hot Stamping of AA7075

Article Preview

Abstract:

Hot stamping of aluminium alloys is a tailored forming process, with the assigned processing windows determining the quality of each hot stamped component in terms of its post-form strength. In this work, a processing window calculator, ‘Tailor’, was developed in order to define the optimal processing parameters that should be used in a production line to successfully produce a component with the desired post-form strength using hot stamping. ‘Tailor’ was developed using the results of forming tests, air-cooling tests and multi-stage artificial ageing tests, which provided guidance on the values for the die closing force, transfer time and artificial ageing time to be used in the hot stamping process. The effectiveness of ‘Tailor’ was demonstrated in two case studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-412

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hao, Z. Liu, F. Zhao, W. Li, W. Huang, Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles, Energy, 91(2015) 151-159.

DOI: 10.1016/j.energy.2015.08.054

Google Scholar

[2] O. Fakir, L. Wang, D. Balint, J. Dear, J. Lin, Numerical study of the solution heat treatment, forming and in-die quenching (HFQ) price on AA 5754, Int. J. Mach. Tool Manu. 87 (2014) 39-48.

DOI: 10.1016/j.ijmachtools.2014.07.008

Google Scholar

[3] Davis, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, University of California, Davis, (2010).

Google Scholar

[4] W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A. 280 (2000) 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[5] P. Lequeu, P. Lassince, T. Warner and G.M. Raynaud, Engineering for the future: weight saving and cost reduction initiatives, Aircr. Eng. Aerosp. Tec. 73 (2001) 147-159.

DOI: 10.1108/00022660110386663

Google Scholar

[6] I.J. Polmear, Light Alloys: Metall. Light Met., third ed., Wiley Press, New York, (1995).

Google Scholar

[7] M. Mohamed, J. Foster, J. Lin, Solution heat treatment in HFQ process, Steel Res. Int., 11 (2008) 160-167.

Google Scholar

[8] M.F. Novella, A. Ghiotti, S. Bruschi, P.F. Bariani, Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars, J. Mater. Process. Tech. 222 (2015) 259-267.

DOI: 10.1016/j.jmatprotec.2015.01.030

Google Scholar

[9] R.P. Garrett, J. Lin, T.A. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling, Int. J. Plasticity. 21 (2005) 1640-1657.

DOI: 10.1016/j.ijplas.2004.11.002

Google Scholar

[10] C. M Abreu, M.J. Cristobal, R. Figueroa, G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation, Appl. Surf. Sci. 327 (2015) 51-61.

DOI: 10.1016/j.apsusc.2014.11.111

Google Scholar

[11] S.V. Emani, J. Benedyk, P. Nash, D. Chen, Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions, J. Mater. Sci. 44 (2009) 6384–6391.

DOI: 10.1007/s10853-009-3879-8

Google Scholar

[12] X. Fan, Z. He, S. Yuan, P. Lin, Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies, Mater. Sci. Eng. A. 587 (2013) 221-227.

DOI: 10.1016/j.msea.2013.08.059

Google Scholar

[13] M.J. Starink, N. Gao, L. Davin, J. Yan, A. Gerezo, Room temperature precipitation in quenched Al–Cu–Mg alloys: a model for the reaction kinetics and yield strength development, Philos. Mag. 13 (2005) 1395-1417.

DOI: 10.1080/14786430412331333374

Google Scholar

[14] X. Liu, K. Ji, O. Fakir, J. Liu, Q. Zhang, L. Wang, Determination of Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075. 4th international Conference on New Forming Technology, (2015).

DOI: 10.1051/mfreview/2016017

Google Scholar

[15] Y. Xiao, Q. Pan, W. Li, X. Liu, Y. He, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy, Mater. Design 32 (2011) 2149-2156.

DOI: 10.1016/j.matdes.2010.11.036

Google Scholar

[16] X. Huang, Q. Pan, B. Li, Z. Liu, Z. Huang, Z. Yin, Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Ma-Zr alloy sheet with trance amount of Sc, J. Alloy. Compd. 650 (2015) 805-820.

DOI: 10.1016/j.jallcom.2015.08.011

Google Scholar

[17] J. Lin, T.A. Dean, R.P. Garrett, A process in forming high strength and complex-shaped Al-alloy sheet components, British Patent, UK, (2008).

Google Scholar

[18] Z. Duan, B. He, Extended Reynolds analogy for slip and transition flow heat transfer in micro channels and nanochannels, Int. J. Heat Mass Transf. 56 (2014) 25-30.

DOI: 10.1016/j.icheatmasstransfer.2014.04.022

Google Scholar

[19] P.T. Tsilingiris, Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy, Sol. Energy. 84 (2010) 308-317.

DOI: 10.1016/j.solener.2009.11.012

Google Scholar

[20] A. Bejan, Convection Heat Transfer, fourth ed., John Wiley & Sons, New Jersey, (2013).

Google Scholar

[21] D. Mclean, Understanding Aerodynamics: Arguing from the Real Physics, second ed., John Wiley & Sons, Chichester, (2012).

Google Scholar

[22] A. Myerson, Handbook of Industrial Crystallization, Butterworth-Heinemann, second ed., Oxford, (2002).

Google Scholar

[23] J. Tu, K. Inthavong, G. Ahmadi, Computational Fluid and Particle Dynamics in the Human Respiratory System, Springer Sci. &Business Media, (2012).

Google Scholar

[24] S. Gang and C. Alfred, Early-stage precipitation in Al–Zn–Mg–Cu alloy, Acta Mater., 52(2004) 4503-4516.

DOI: 10.1016/j.actamat.2004.06.025

Google Scholar

[25] R. Ferragut, A. Somoza, A. Tolley, I. Torriani, Precipitation kinetics in Al–Zn–Mg commercial alloys, J. Mater. Process. Technol., 41(2003)35-40.

DOI: 10.1016/s0924-0136(02)01044-0

Google Scholar

[26] L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel et al., GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta Mater. 49 (2001) 3443-3451.

DOI: 10.1016/s1359-6454(01)00251-8

Google Scholar