Review of Research Progress on Size Effect in Micro-Forming

Article Preview

Abstract:

Microforming process is a promising approach to manufacture microparts for its high productivity, high material usage and good part properties. However, when the part size is scaled down from macro to micro level, the deformation behaviors of materials change and the size effects occur. This makes it difficult to use microforming process in industry. In the last decade, many studies have been conducted with different test methods and materials. In this paper, the main test apparatus and the methods used to study the size effect and the significant results are reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-121

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.L. Chan, M.W. Fu. Studies of the interactive effect of specimen and grain sizes on the plastic deformation behavior in microforming. Int J Adv Manuf Technol, 2012, 62: 989-1000.

DOI: 10.1007/s00170-011-3869-2

Google Scholar

[2] J.T. Gau, C. Principe, J.W. Wang. An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Tech, 2007, 184(1-3): 42-46.

DOI: 10.1016/j.jmatprotec.2006.11.003

Google Scholar

[3] J.T. Gau, C. Principe, M. Yu. Springback behavior of brass in micro sheet forming. J Mater Process Tech, 2007, 191(1-3): 7-10.

DOI: 10.1016/j.jmatprotec.2007.03.035

Google Scholar

[4] S.A. Parasiz, B. Kinsey, N. Krishnan, J. Cao, M. Li. Investigation of deformation size effects during microextrusion. J Manuf Sci Eng, 2007, 129(4): 690-690.

DOI: 10.1115/1.2738107

Google Scholar

[5] S.G. Kang, Y. Na, K.Y. Park, J.E. Jeon, S.C. Son, J.H. Lee. A study on the micro-formability of Al 5083 superplastic alloy using micro-forging method. Mater Sci Eng, 2007, 449: 338-342.

DOI: 10.1016/j.msea.2006.01.166

Google Scholar

[6] J. Cao, W.M. Zhuang, S.W. Wang, J.G. Lin. Development of a VGRAIN system for CPFE analysis in micro-forming applications. Int J Adv Manuf Technol, 2010, 47(9-12): 981-991.

DOI: 10.1007/s00170-009-2135-3

Google Scholar

[7] Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, E.J. Lavernia. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng, 2009, 525(1-2): 68-77.

DOI: 10.1016/j.msea.2009.06.031

Google Scholar

[8] G. Simons, C. weippert, J. Dual, J. Villain. Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng, 2006, 416(1-2): 290-299.

DOI: 10.1016/j.msea.2005.10.060

Google Scholar

[9] C. Barbier, S. Thibaud, P. Picart. Size effects on material behavior in microforming. Int J Mater Form suppl, 2008, 1: 439-442.

DOI: 10.1007/s12289-008-0089-x

Google Scholar

[10] C. Barbier, S. Thibaud, F. Richard, P. Picart. Size effects on material behavior in microforming. Int J Mater Form suppl, 2009, 1: 625-628.

DOI: 10.1007/s12289-009-0563-0

Google Scholar

[11] G. Ehsan, M.J. Tan, E.W.J. Anders, S.C.V. Lim. Progressive microforming process: towards the mass production of micro-parts using sheet metal. Int J Adv Manuf Technol, 2013, 66: 611-621.

DOI: 10.1007/s00170-012-4352-4

Google Scholar

[12] L.D. Cheng, C.J. Wang, C.J. Wang, B. Guo, Z.L. Wang. Size effects on plastic deformation behavior in micro radial compression of pure copper. Trans Nonferrous Met Soc China, 2013, 23: 2686-2691.

DOI: 10.1016/s1003-6326(13)62785-5

Google Scholar

[13] E. Bernd, E. Ulf, G. Manfred. Microforming and investigation of parameter interactions. Prod Eng Res Devel, 2010, 4: 135-140.

Google Scholar

[14] R.S. Eriksen, S. Weidel, H.N. Hansen. Tribological influence of tool surface roughness within microforming. Int J Mater Form, 2010, 3(1): 419-422.

DOI: 10.1007/s12289-010-0796-y

Google Scholar