Spectroscopic Studies of Adsorbed Myoglobin on Zinc Containing Hydroxyapatite

Article Preview

Abstract:

The knowledge on human tissue is very important to recognize desirable properties of biomaterials. Host cells, extracellular matrix, integrated vessels and interstitial fluids create a complex and dynamic system able to regenerate and respond to environmental stimuli. Myoglobin is a protein with most of α-helices on its secondary structure, and responsible for oxygen binding and release in muscles, by the heme group. This work investigates the Mb adsorption process onto zinc-hydroxyapatite (ZnHA) surface by spectroscopic studies. To do so, ZnHA (0.05 g) was incubated with 4mL of 2mg Mb/mL on phosphate buffer solution pH 6.0 for 24h at 37°C. The FTIR analyses of ZnHA powders before and after protein adsorption provided information concerning the protein content. UV-Vis spectrocopy in the reflectance mode suggested a mixture of MbO2 and Met Mb on lyophilized solid Mb, and the prevalence of MetMb form when Mb was adsorbed on ZnHA sample. The decrease of UV-Vis secondary bands suggests interactions through the Mb heme group and the ZnHA surfaces. Circular Dichroism (CD) spectroscopy indicated the maintenance of the Mb α-helices secondary structure after the adsorption process on ZnHA powders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-45

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M. Crapo, T. W. Gilbert, S. F. Badylak, An overview of tissue and whole organ decellularization processes, Biomaterials. 32 (2011) 3233–3243.

DOI: 10.1016/j.biomaterials.2011.01.057

Google Scholar

[2] J. O. Lim, J. S. Huh, S. I. Haider Abdi1, S. Muk Ng, J. J Yoo, Functionalized Biomaterials - Oxygen Releasing Scaffolds, J Biotechnol Biomater. 5: 182, (2015) 2-11.

Google Scholar

[3] S. Franzen, L.J. Moore, W.H. Woodruff, S. G., J. Boxer, Phys. Chem. B. 103 (1999) 3070-3072.

Google Scholar

[4] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 30 (2012) 546–554.

DOI: 10.1016/j.tibtech.2012.07.005

Google Scholar

[5] J. P. K. Armstrong, R. Shakur, J. P. Horne, S. C. Dickinson, C. T. Armstrong, K. Lau, J. Kadiwala, R. Lowe, A. Seddon, S. Mann, J.L.R. Anderson, A. W. Perriman, A. P. Hollander, Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue, NATURE COMMUNICATIONS. 6 (2015).

DOI: 10.1038/ncomms8405

Google Scholar

[6] J. Chou, M. Komuro, J. Hao, S. Kuroda, Y. Hattori, B. Ben-Nissan, B. Milthorpe, M. Otsuka, Bioresorbable zinc hydroxyapatite guide bone regeneration membrane for bone regeneration, Clin. Oral Impl. Res. 27 (2016) 354–360.

DOI: 10.1111/clr.12520

Google Scholar

[7] K. Wang, C. Zhou, Y. Hong, X. Zhang, A review of protein adsorption on bioceramics, Interface Focus. 2 (2012) 259–277.

DOI: 10.1098/rsfs.2012.0012

Google Scholar

[8] E. Mavropoulos, A. M. Costa, L. T. Costa, Carlos A. Achete, Alexandre Mello, José M. Granjeiro, Alexandre M. Rossi, Adsorption and bioactivity studies of albumin onto hydroxyapatite surface, Colloids and Surfaces B: Biointerfaces. 83 (2011) 1–9.

DOI: 10.1016/j.colsurfb.2010.10.025

Google Scholar

[9] E. Mavropoulos, M. Hausen, A.M. Costa, G. Alves, A. Mello, C.A. Ospina, M. Mir, J.M. Granjeiro, A.M. Rossi, The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface, J Mater Sci Mater Med. 24 (2013).

DOI: 10.1007/s10856-013-4851-3

Google Scholar

[10] S. Dasgupta, S. S. Banerjee, A. Bandyopadhyay, S. Bose, Zn- and Mg-Doped Hydroxyapatite Nanoparticles for Controlled Release of Protein, Langmuir. 26: 7 (2010) 4958–4964.

DOI: 10.1021/la903617e

Google Scholar

[11] M. P. Richards, Redox Reactions of Myoglobin, Antioxidants & Redox Signaling. 18 (2013) 2342–2351.

DOI: 10.1089/ars.2012.4887

Google Scholar

[12] N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc. 1 (2006) 2876–2890.

DOI: 10.1038/nprot.2006.202

Google Scholar