Chlorhexidine Adsorption in Hydroxyapatite and Alginate Microspheres by Extrusion in Zinc and Calcium Chloride

Article Preview

Abstract:

In this work, the adsorption of a low-concentration solution of chlorhexidine (CHX), an antimicrobial drug, in hydroxyapatite (HA) and alginate microspheres was studied. The microspheres were formed by extrusion of a 1:10 mixture of alginate and HA in two different divalent solutions: CaCl2 and ZnCl2. UV-Vis spectroscopy showed that the microspheres adsorbed approximately half of the chlorhexidine in solution, which was initially at 0.2%. XRD patterns obtained prior adsorption confirmed the presence of HA as the only crystalline phase. Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis were performed before and after CHX adsorption. The spheres produced in CaCl2 solution did not show significant change after adsorption. However, samples obtained in ZnCl2 solution showed a different microstructure, with the presence of crystals with a high Zn concentration. X-Ray Fluorescence (XRF) confirmed the presence of ZnO in the samples after CHX absorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Ripamonti, Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models, Biomaterials, vol. 17, no. 1, p.31–35, (1996).

DOI: 10.1016/0142-9612(96)80752-6

Google Scholar

[2] C. L. Shields, J. A. Shields, P. De Potter, and A. D. Singh, Problems with the hydroxyapatite orbital implant: experience with 250 consecutive cases., Br. J. Ophthalmol., vol. 78, no. 9, p.702–706, Sep. (1994).

DOI: 10.1136/bjo.78.9.702

Google Scholar

[3] R. A. Goldberg, J. B. Holds, and J. Ebrahimpour, Exposed Hydroxyapatite Orbital Implants, Ophthalmology, vol. 99, no. 5, p.831–836, May (1992).

DOI: 10.1016/s0161-6420(92)31920-7

Google Scholar

[4] I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, and L. Montanaro, Sol-gel derived 45S5 bioglass: Synthesis, microstructural evolution and thermal behaviour, J. Mater. Sci. Mater. Med., vol. 23, no. 8, p.1849–1866, (2012).

DOI: 10.1007/s10856-012-4667-6

Google Scholar

[5] P. Gjermo, Chlorhexidine in dental practice, J. Clin. Periodontol. Clin. Periodontol., vol. 1, no. 3, p.143–152, (1974).

DOI: 10.1111/j.1600-051x.1974.tb01250.x

Google Scholar

[6] C. G. Emilson, Susceptibility of various microorganisms to chlorhexidine., Scand. J. Dent. Res., vol. 85, no. 4, p.255–65, May (1977).

Google Scholar

[7] H. Nordbö, The affinity of chlorhexidine for hydroxyapatite and tooth surfaces., Scand. J. Dent. Res., vol. 80, no. 6, p.465–73, (1972).

Google Scholar

[8] D. S. Kim, J. Kim, K. K. Choi, and S. Y. Kim, The influence of chlorhexidine on the remineralization of demineralized dentine, J. Dent., vol. 39, no. 12, p.855–862, (2011).

DOI: 10.1016/j.jdent.2011.09.010

Google Scholar

[9] C. A. S. de Souza, A. P. V Colombo, R. M. Souto, C. M. Silva-Boghossian, J. M. Granjeiro, G. G. Alves, A. M. Rossi, and M. H. M. Rocha-Leão, Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity, Colloids Surfaces B Biointerfaces, vol. 87, no. 2, p.310–318, (2011).

DOI: 10.1016/j.colsurfb.2011.05.035

Google Scholar

[10] M. R. De Boisseson, M. Leonard, P. Hubert, P. Marchal, A. Stequert, C. Castel, E. Favre, and E. Dellacherie, Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability, J. Colloid Interface Sci., vol. 273, no. 1, p.131–139, (2004).

DOI: 10.1016/j.jcis.2003.12.064

Google Scholar

[11] R. Costa Cuozzo, M. Helena Miguez da Rocha Leão, L. de Andrade Gobbo, D. Navarro da Rocha, N. Mohammed Elmassalami Ayad, W. Trindade, A. Machado Costa, and M. Henrique Prado da Silva, Zinc alginate–hydroxyapatite composite microspheres for bone repair, Ceram. Int., vol. 40, no. 7, p.11369–11375, Aug. (2014).

DOI: 10.1016/j.ceramint.2014.02.107

Google Scholar

[12] M. Yamaguchi and R. Yamaguchi, Action of zinc on bone metabolism in rats, Biochem. Pharmacol., vol. 35, no. 5, p.773–777, Mar. (1986).

DOI: 10.1016/0006-2952(86)90245-5

Google Scholar

[13] W. R. Holloway et al. Osteoblast-mediated effects of zinc on isolated rat osteoclasts: Inhibition of bone resorption and enhancement of osteoclast number, Bone, vol. 19, no. 2, p.137–142, Aug. (1996).

DOI: 10.1016/8756-3282(96)00141-x

Google Scholar

[14] L. Li, Y. Fang, R. Vreeker, I. Appelqvist, and E. Mendes, Reexamining the egg-box model in calcium - Alginate gels with X-ray diffraction, Biomacromolecules, vol. 8, no. 2, p.464–468, (2007).

DOI: 10.1021/bm060550a

Google Scholar

[15] T. Jin, D. Sun, J. Y. Su, H. Zhang, and H. -J. Sue, Antimicrobial Efficacy of Zinc Oxide Quantum Dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157: H7, J. Food Sci., vol. 74, no. 1, pp. M46–M52, Jan. (2009).

DOI: 10.1111/j.1750-3841.2008.01013.x

Google Scholar

[16] J. F. Hernández-Sierra, F. Ruiz, D. C. Cruz Pena, F. Martínez-Gutiérrez, A. E. Martínez, A. de Jesús Pozos Guillén, H. Tapia-Pérez, and G. Martínez Castañón, The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomedicine Nanotechnology, Biol. Med., vol. 4, no. 3, p.237–240, (2008).

DOI: 10.1016/j.nano.2008.04.005

Google Scholar