Quantitative Changes of Bone Volume and Immunohistochemical Analysis of Biomarkers in Healthy, Osteoporotic and Osteoporotic Sham Surgery Affected Rabbit Bone Controls

Article Preview

Abstract:

Aim of our preliminary in vivo study was to evaluate bone regeneration properties in three different bone conditions and to compare expression of OPG, NFkB105, BMP2/4, MMP2, IL 1 and IL 10 between healthy, osteoporotic and osteoporotic sham surgery affected rabbit bone controls. Osteoporosis index was found to be higher in healthy bone, while rabbits with osteoporotic sham surgery affected bone showed slight elevation of mean trabecular field rather than rabbits with osteoporotic bone. Expression of OPG and NFkB105 was higher in healthy bone, with less equal appearance in osteoporotic and osteoporotic sham surgery affected bone. Presence of BMP2/4 and MMP2 was much higher in healthy bone, whereas twice less in osteoporotic group. Osteoporotic sham surgery affected group showed recurrence of immunoreactive structures similar to healthy group of IL 1 and IL 10. OPG and was found as the most stable indicators for bone regeneration. Decrease of BMP2/4, MMP2, IL-1 and 1L-10 in osteoporotic bone with following increase in osteoporotic sham surgery affected bone, proves the role of traumatic injury as the inducer of bone regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-239

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Rucci, Molecular biology of bone remodeling, Clin. Cases Miner. Bone Metab. 5 (2008) 49-56.

Google Scholar

[2] Y.Y. Kong, H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, et al., OPG is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature. 397 (1999) 315-323.

DOI: 10.1038/16852

Google Scholar

[3] G. Bonizzi, M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity, Trends Immunol. 25 (2004) 280-288.

DOI: 10.1016/j.it.2004.03.008

Google Scholar

[4] M. Baud'huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann, RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases, Cell Mol. Life Sci. 64 (2007) 2334-2350.

DOI: 10.1007/s00018-007-7104-0

Google Scholar

[5] T. Saito, M. Ogawa, Y. Hata, K. Bessho, Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts, J. Endod. 30 (2004) 205-208.

DOI: 10.1097/00004770-200404000-00005

Google Scholar

[6] M.S. Kim, W.C. Noh, Y.G. Kim, J.Y. Kim, J.W. Park, J.Y. Suh, Effect of rhBMP-2 on mineralization of human periodontal ligament cells under high glucose conditions in vitro, Int. J. Diabetes Dev. Ctries. 35 (2015) 108-114.

DOI: 10.1007/s13410-014-0258-z

Google Scholar

[7] G.E. Davis, D.R. Senger, Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, Circ. Res. 97 (2005) 1093-1107.

DOI: 10.1161/01.res.0000191547.64391.e3

Google Scholar

[8] T. Alliston, Biologic regulation of bone quality, Curr. Osteoporos. Rep. 12 (2014) 366-375.

DOI: 10.1007/s11914-014-0213-4

Google Scholar

[9] J.E. Compston, Sex steroids and bone, Physiol. Rev. 81 (2001) 419-447.

Google Scholar

[10] D. Liu, S. Yao, G.E. Wise, Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle, Eur. J. Oral. Sci. 114 (2006) 42-49.

DOI: 10.1111/j.1600-0722.2006.00283.x

Google Scholar

[11] Pilmane M, Rumba I, Sundler F, Luts A, Patterns of distribution and occurrence of neuroendocrine elements in lungs of humans with chronic lung disease, Proc. Latvian Acad. Sci. Sect. B. 52 (1998) 144–52.

Google Scholar

[12] E. Hills, C.R. Dunstan, S.Y.P. Wong, R.A. Evans, Bone histology in young adult osteoporosis, J. Clin. Pathol. 42 (1987) 391-397.

DOI: 10.1136/jcp.42.4.391

Google Scholar

[13] L. Baofeng, Y. Zhi, C. Bei, M. Guolin, Y. Qingshui, L. Jian, Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocoticoid, ActaOrthop. 81 (2010), 396 – 401.

DOI: 10.3109/17453674.2010.483986

Google Scholar

[14] M.C. Walsh, Y. Choi, Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond, Front. Immunol. 5 (2014) 1-11.

Google Scholar

[15] J. Chang, Z. Wang, E. Tang, Z. Fan, L. McCauley, R. Franceschi et al., Inhibition of osteoblastic bone formation by nuclear factor-kappaB, Nat. Med. 15 (2009) 682-689.

DOI: 10.1038/nm.1954

Google Scholar

[16] R.A. Eliseev, E.M. Schwarz, M.J. Zuscik, R.J. O'Keefe, H. Drissi, R.N. Rosier, Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB, Exp. Cell Res. 312 (2006) 40-50.

DOI: 10.1016/j.yexcr.2005.09.016

Google Scholar

[17] L.J. van Baardewijk, J. van der Ende, S. Lissenberg-Thunnissen, L.M. Romijn, L.J. Hawinkels, C.F. Sier, Circulating bone morphogenetic protein levels and delayed fracture healing, Int. Orthop. 37 (2013), 523-527.

DOI: 10.1007/s00264-012-1750-z

Google Scholar

[18] H. Takase, S. Yano, T. Yamaguchi, I. Kanazawa, K. Hayashi, M. Yamamoto et al., Parathyroid hormone upregulates BMP-2 mRNA expression through mevalonate kinase and Rho kinase inhibition in osteoblastic MC3T3-E1 cells, Horm. Metab. Re. 41 (2009).

DOI: 10.1055/s-0029-1233460

Google Scholar

[19] P. Campisi, R.C. Hamdy, D. Lauzier, M. Amako, F. Rauch, M.L. Lessard, Expression of bone morphogenic proteins during mandibular distraction osteogenesis, Plast. Reconstr. Surg. 111 (2003) 201-208.

DOI: 10.1097/01.prs.0000034932.99249.34

Google Scholar

[20] K. Inoue, Y. Mikuni-Takagaki, K. Oikawa, T. Itoh, M. Inada, T. Noguchi, A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism, J. Biol. Chem. 281 (2006) 33814-33824.

DOI: 10.1074/jbc.m607290200

Google Scholar

[21] A. Neve, A. Corrado, F.P. Cantatore, Osteoblast physiology in normal and pathological conditions, Cell Tissue Res. 343 (2011), 289-302.

DOI: 10.1007/s00441-010-1086-1

Google Scholar

[22] L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects, J. Clin. Invest. 115 (2005) 3318-3325.

DOI: 10.1172/jci27071

Google Scholar

[23] J. Lange, A. Sapozhnikova, C. Lu, D. Hu, X. Li, R.S. Marcucio, Action of IL-1β during fracture healing, J. Orthop. Res. 28 (2010) 778-784.

DOI: 10.1002/jor.21061

Google Scholar

[24] R. Dresner-Pollak, N. Gelb, D. Rachmilewitz, F. Karmeli, M. Weinreb, Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones, Gastroenterology. 127 (2004) 792-801.

DOI: 10.1053/j.gastro.2004.06.013

Google Scholar

[25] D. M. Mosser, X. Zhang, Interleukin-10: new perspectives on an old cytokine, Immun. Rev. 226 (2008) 205–218.

Google Scholar