[1]
N. Rucci, Molecular biology of bone remodeling, Clin. Cases Miner. Bone Metab. 5 (2008) 49-56.
Google Scholar
[2]
Y.Y. Kong, H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, et al., OPG is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature. 397 (1999) 315-323.
DOI: 10.1038/16852
Google Scholar
[3]
G. Bonizzi, M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity, Trends Immunol. 25 (2004) 280-288.
DOI: 10.1016/j.it.2004.03.008
Google Scholar
[4]
M. Baud'huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann, RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases, Cell Mol. Life Sci. 64 (2007) 2334-2350.
DOI: 10.1007/s00018-007-7104-0
Google Scholar
[5]
T. Saito, M. Ogawa, Y. Hata, K. Bessho, Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts, J. Endod. 30 (2004) 205-208.
DOI: 10.1097/00004770-200404000-00005
Google Scholar
[6]
M.S. Kim, W.C. Noh, Y.G. Kim, J.Y. Kim, J.W. Park, J.Y. Suh, Effect of rhBMP-2 on mineralization of human periodontal ligament cells under high glucose conditions in vitro, Int. J. Diabetes Dev. Ctries. 35 (2015) 108-114.
DOI: 10.1007/s13410-014-0258-z
Google Scholar
[7]
G.E. Davis, D.R. Senger, Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, Circ. Res. 97 (2005) 1093-1107.
DOI: 10.1161/01.res.0000191547.64391.e3
Google Scholar
[8]
T. Alliston, Biologic regulation of bone quality, Curr. Osteoporos. Rep. 12 (2014) 366-375.
DOI: 10.1007/s11914-014-0213-4
Google Scholar
[9]
J.E. Compston, Sex steroids and bone, Physiol. Rev. 81 (2001) 419-447.
Google Scholar
[10]
D. Liu, S. Yao, G.E. Wise, Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle, Eur. J. Oral. Sci. 114 (2006) 42-49.
DOI: 10.1111/j.1600-0722.2006.00283.x
Google Scholar
[11]
Pilmane M, Rumba I, Sundler F, Luts A, Patterns of distribution and occurrence of neuroendocrine elements in lungs of humans with chronic lung disease, Proc. Latvian Acad. Sci. Sect. B. 52 (1998) 144–52.
Google Scholar
[12]
E. Hills, C.R. Dunstan, S.Y.P. Wong, R.A. Evans, Bone histology in young adult osteoporosis, J. Clin. Pathol. 42 (1987) 391-397.
DOI: 10.1136/jcp.42.4.391
Google Scholar
[13]
L. Baofeng, Y. Zhi, C. Bei, M. Guolin, Y. Qingshui, L. Jian, Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocoticoid, ActaOrthop. 81 (2010), 396 – 401.
DOI: 10.3109/17453674.2010.483986
Google Scholar
[14]
M.C. Walsh, Y. Choi, Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond, Front. Immunol. 5 (2014) 1-11.
Google Scholar
[15]
J. Chang, Z. Wang, E. Tang, Z. Fan, L. McCauley, R. Franceschi et al., Inhibition of osteoblastic bone formation by nuclear factor-kappaB, Nat. Med. 15 (2009) 682-689.
DOI: 10.1038/nm.1954
Google Scholar
[16]
R.A. Eliseev, E.M. Schwarz, M.J. Zuscik, R.J. O'Keefe, H. Drissi, R.N. Rosier, Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB, Exp. Cell Res. 312 (2006) 40-50.
DOI: 10.1016/j.yexcr.2005.09.016
Google Scholar
[17]
L.J. van Baardewijk, J. van der Ende, S. Lissenberg-Thunnissen, L.M. Romijn, L.J. Hawinkels, C.F. Sier, Circulating bone morphogenetic protein levels and delayed fracture healing, Int. Orthop. 37 (2013), 523-527.
DOI: 10.1007/s00264-012-1750-z
Google Scholar
[18]
H. Takase, S. Yano, T. Yamaguchi, I. Kanazawa, K. Hayashi, M. Yamamoto et al., Parathyroid hormone upregulates BMP-2 mRNA expression through mevalonate kinase and Rho kinase inhibition in osteoblastic MC3T3-E1 cells, Horm. Metab. Re. 41 (2009).
DOI: 10.1055/s-0029-1233460
Google Scholar
[19]
P. Campisi, R.C. Hamdy, D. Lauzier, M. Amako, F. Rauch, M.L. Lessard, Expression of bone morphogenic proteins during mandibular distraction osteogenesis, Plast. Reconstr. Surg. 111 (2003) 201-208.
DOI: 10.1097/01.prs.0000034932.99249.34
Google Scholar
[20]
K. Inoue, Y. Mikuni-Takagaki, K. Oikawa, T. Itoh, M. Inada, T. Noguchi, A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism, J. Biol. Chem. 281 (2006) 33814-33824.
DOI: 10.1074/jbc.m607290200
Google Scholar
[21]
A. Neve, A. Corrado, F.P. Cantatore, Osteoblast physiology in normal and pathological conditions, Cell Tissue Res. 343 (2011), 289-302.
DOI: 10.1007/s00441-010-1086-1
Google Scholar
[22]
L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects, J. Clin. Invest. 115 (2005) 3318-3325.
DOI: 10.1172/jci27071
Google Scholar
[23]
J. Lange, A. Sapozhnikova, C. Lu, D. Hu, X. Li, R.S. Marcucio, Action of IL-1β during fracture healing, J. Orthop. Res. 28 (2010) 778-784.
DOI: 10.1002/jor.21061
Google Scholar
[24]
R. Dresner-Pollak, N. Gelb, D. Rachmilewitz, F. Karmeli, M. Weinreb, Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones, Gastroenterology. 127 (2004) 792-801.
DOI: 10.1053/j.gastro.2004.06.013
Google Scholar
[25]
D. M. Mosser, X. Zhang, Interleukin-10: new perspectives on an old cytokine, Immun. Rev. 226 (2008) 205–218.
Google Scholar