Complex XPS and Raman Study of Graphene on Copper and Si/SiO2 Subjected to Ar Ion Treatment

Article Preview

Abstract:

Graphene grown by chemical vapor deposition on copper and the one transferred to Si/SiO2 substrate were subjected to Ar ion treatment. A combination of X-ray photoelectron spectroscopy and Raman spectroscopy were used for characterization. According to XPS data sample on Si/SiO2 appears less susceptible to sputtering under bombardment. However, the defect concentrations introduced to the transferred graphene reach up the value two orders of magnitude higher than that in as grown graphene on Cu. We attribute this difference to the influence of the non-compensated charge formed on the insulating SiO2 layer under bombardment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-262

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett. 12 (2012) 3925-3930.

DOI: 10.1021/nl300901a

Google Scholar

[2] A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies, J. Phys. Chem. 115 (2011) 17009-17019.

DOI: 10.1021/jp203741y

Google Scholar

[3] A.I. Rudskoy, T.S. Koltsova, T.V. Larionova, A.N. Smirnov, E.S. Vasil'eva, A.G. Nasibulin, Gas-Phase Synthesis and Control of Structure and Thickness of Graphene Layers on Copper Substrates, Metal Science and Heat Treatment, 58 (2016) 40-45.

DOI: 10.1007/s11041-016-9962-2

Google Scholar

[4] S Stankovich, D. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruo, Synthesis of Graphene –based nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[5] Y. -C. Lin, C. -C. Lu, C. -H. Yeh, C. Jin, K. S., P. -W. Chiu, Graphene Annealing: How Clean Can It Be? Nano Lett. 12 (2012) 414−419.

DOI: 10.1021/nl203733r

Google Scholar

[6] R. Blume, P.R. Kidambi, B.C. Bayer, R.S. Weatherup, Z. -J. Wang, G. Weinberg, M. -G. Willinger, M. Greiner, S. Hofmann, A. Knop-Gerickee, R. Schlogle, The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions, Phys. Chem. Chem. Phys. 16 (2014).

DOI: 10.1039/c4cp04025b

Google Scholar

[7] D.L. Duong, G.H. Han, S. M. Lee, F. Gunes, E.S. Kim, S. T. Kim, H. Kim, Q.H. Ta, K.P. So, S.J. Yoon, S.J. Chae, Y.W. Jo, M.H. Park, S.H. Chae, S.C. Lim, J.Y. Choi, Y.H. Lee, Probing graphene grain boundaries with optical microscopy, Nature Letter 490 (2012).

DOI: 10.1038/nature11562

Google Scholar

[8] A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology 8 (2013) 235-246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[9] Z.H. Ni, W. Chen, X.F. Fan, J.L. Kuo, T. Yu, A.T.S. Wee, X.Z. Shen, Raman spectroscopy of epitaxial graphene on a SiC substrate, Phys. Rev. B 77 (2008) 115416.

DOI: 10.1103/physrevb.77.115416

Google Scholar

[10] M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, Rodrigo B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon 48 (2010) 1592-1597.

DOI: 10.1016/j.carbon.2009.12.057

Google Scholar