[1]
Information on http: /www. Wikibedia, International Standard of Resistance for Copper (1914).
Google Scholar
[2]
L. Kommel, I. Hussainova, O. Volobueva, Microstructure and properties development of copper during severe plastic deformation, Mater. Design. 28 (2007) 2121-2128.
DOI: 10.1016/j.matdes.2006.05.021
Google Scholar
[3]
N. Lugo, N. Llorca, J.J. Suňol, J.M. Cabrera, Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing, J. Mater. Sci. 45 (2010) 2264-2273. DOI: 10. 1007/s10853-009-4139-7.
DOI: 10.1007/s10853-009-4139-7
Google Scholar
[4]
W.L. Li, N.R. Tao. Z. Han, K. Lu, Comparisons of dry sliding tribological behaviors between coarse-grained and nanocrystalline copper, Wear. 274-275 (2012) 306-312.
DOI: 10.1016/j.wear.2011.09.010
Google Scholar
[5]
B. Yao, Z. Han, K. Lu, Correlation between wear resistance and subsurface recrystallization structure in copper, Wear 294-295 (2012) 438-445.
DOI: 10.1016/j.wear.2012.07.008
Google Scholar
[6]
Y. Estrin, A. Vinogradov (2013) Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61, pp.782-817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[7]
M. Yu Murashkin, I. Sabirov, X. Sauvage, R. Z. Valiev. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J Mater Sci, (2015) DOI 10. 1007/s10853-015-9354-9.
DOI: 10.1007/s10853-015-9354-9
Google Scholar
[8]
L. Kommel, Properties development of ultrafine-grained copper under hard cyclic viscoplastic deformation, Mater. Letters 64 (2010) 1580-1582.
DOI: 10.1016/j.matlet.2010.04.056
Google Scholar
[9]
L. Kommel, R. Veinthal, HCV deformation – method to study the viscoplastic behavior of nanaocrystalline metallic materials, Rev. Adv. Mater. Sci. 10 (2005) 442-446.
Google Scholar
[10]
L. Kommel. The effect of HCV deformation on hardening/softening of SPD copper. Ultrafine Grained Materials III. Edited by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe. TMS, 2004, pp.571-576.
Google Scholar
[11]
D. Shangina, Y. Maksimenkova, N. Bochvar, V. Serebryany, G. Raab, A. Vinogradov, W. Skrotzki, S. Dobatkin. Influence of alloying with hafnium on the microstructure, texture and properties of Cu-Cr alloy after equal channel angular pressing. J Mater Sci 51 (2016).
DOI: 10.1007/s10853-016-9854-2
Google Scholar
[12]
L. Kommel, A. Pokatilov, Electrical conductivity and mechanical properties of Cu-0. 7 wt. % Cr and Cu-1. 0 wt. % Cr alloys processed by severe plastic deformation, IOP Conf. Series: Mater. Sci. Eng. 63 (2014) 012169-1 – 012169-7.
DOI: 10.1088/1757-899x/63/1/012169
Google Scholar
[13]
R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, R.Z. Valiev, Nanostructured Cu-Cr alloy with high strength and electrical conductivity, J. Appl. Physics 115 (2014) 194301-1-4.
DOI: 10.1063/1.4874655
Google Scholar
[14]
S.V. Dobatkin, J. Gubicza, D.V. Shangina, N.R. Bochvar, N.Y. Tabachkova, High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation, Mater. Lettes 153 (2015) 5-9.
DOI: 10.1016/j.matlet.2015.03.144
Google Scholar
[15]
K.X. Wei, W. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, J. Hu, Microstructure, mechanical properties and electrical conductivity of industrial Cu–0. 5%Cr alloy processed by severe plastic deformation, Mater. Sci. Eng. A 528 (2011) 1478-1484.
DOI: 10.1016/j.msea.2010.10.059
Google Scholar
[16]
M. I. Aleutdinova, V. V. Fadin, A.V. Kolubaev, V. A. Aleutdinova, Contact Characteristics of Metallic Materials in Conditions of Heavy Loading by Friction or by Electric Current, Frict. Wear Res. 2 (2014) 22-28.
DOI: 10.1063/1.4898903
Google Scholar
[17]
L. Kommel, R. Veinthal, V. Mikli, A. Dedov. Study of the ultrafine-grains intrinsic nanostructure refinement by severe plastic deformation of copper alloys. Proc. 3rd. Int. Conf. Optimization and Analysis of Structures (OAS 2015), Tartu, Estonia, August 23-25, 2015, Tartu University press.
Google Scholar