[1]
X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, et al., Interfacial Microstructure of Chromium Oxide Coatings, Advanced Engineering Materials 9 (2007) 594-599.
DOI: 10.1002/adem.200700057
Google Scholar
[2]
CRC Handbook of Chemistry and Physics, 96th Edition, ed. Haynes, W.M., 2015, Boca Raton: CRC Press.
Google Scholar
[3]
L. -M. Berger, C.C. Stahr, S. Saaro, S. Thiele, M. Woydt, N. Kelling, Dry sliding up to 7. 5 m/s and 800 °C of thermally sprayed coatings of the TiO2–Cr2O3 system and (Ti, Mo)(C, N)–Ni(Co), Wear 267 (2009) 954-964.
DOI: 10.1016/j.wear.2008.12.105
Google Scholar
[4]
Cetinel H., Celik E., and Kusoglu M.I., Tribological behavior of Cr2O3 coatings as bearing materials, Journal of Materials Processing Technology 196 (2008) 259-265.
DOI: 10.1016/j.jmatprotec.2007.05.048
Google Scholar
[5]
B. Bhushan, B.K. Gupta, Handbook of Tribology of Materials for Coatings and Surface Treatments, McGraw-Hill, New York, (1991).
Google Scholar
[6]
D. Toma, W Brandl, G. Marginean, Wear and corrosion behaviour of thermally sprayed cermet coatings, Surface and Coating Technology 138 (2001) 149–158.
DOI: 10.1016/s0257-8972(00)01141-5
Google Scholar
[7]
K. Hirota, Y. Takano, M. Yoshinaka and O. Yamaguchi, Microstructure and mechanical properties of hot isostatically pressed Cr2O3+5 vol. % Mo composites, Materials Research Bulletin 35 (13) (2000), 2217-2223.
DOI: 10.1016/s0025-5408(00)00414-1
Google Scholar
[8]
T. Komeda, Y. Fukumoto, M. Yoshinaka, K. Hirota, and O. Yamaguehi, Hot Pressing of Cr203 Powder with Thin Hexagonal Plate Particles, Materials Research Bulletin 3 (1996) 965-971.
DOI: 10.1016/s0025-5408(96)00061-x
Google Scholar
[9]
DSMTS-0071. 1 – Chromium Oxide - 40% Titanium Oxide Powder, Data sheet, 2014, Oerlikon Metco.
Google Scholar
[10]
H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhý, M. J. Reece, Graphene reinforced alumina nano-composites, Carbon 64 (2013) 359-369.
DOI: 10.1016/j.carbon.2013.07.086
Google Scholar
[11]
L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano 5 (2011) 3182-3190.
DOI: 10.1021/nn200319d
Google Scholar
[12]
L. Kvetková, A. Duszová, P. Hvizdoš, J. Dusza, P. Kun, C. Balázsi, Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites, Scripta Materialia 66 (2012) 793-796.
DOI: 10.1016/j.scriptamat.2012.02.009
Google Scholar
[13]
J. Liu, H. Yan, M.J. Reece and K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, Journal of the European Ceramic Society 32 (2012) 4185-4193.
DOI: 10.1016/j.jeurceramsoc.2012.07.007
Google Scholar
[14]
W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80 (1958) 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[15]
S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, A chemical route to graphene for device applications, Nano Letters 7 (2007) 3394-3398.
DOI: 10.1021/nl0717715
Google Scholar
[16]
V. K. Singh, M. E. Cura, X-W Liu, L-S. Johansson, Y. Ge, S-P. Hannula, Tuning the Optical, Mechanical, and Adsorption Properties of Silica by Graphene Oxide, Chempluschem 79 (2014) 1512-1522.
DOI: 10.1002/cplu.201402138
Google Scholar
[17]
X. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin, Alex A. Volinsky, Investigation of microstructure and mechanical properties of multi-layer Cr/ Cr2O3 coatings, Thin Solid Films 517 (2009) 1922-(1927).
DOI: 10.1016/j.tsf.2008.10.026
Google Scholar
[18]
C.K. Gupta, Chemical Metallurgy: Principles and Practise, Wiley, (2006).
Google Scholar