Evaluation of Equilibrium Moisture Content and Chemical Composition in Torrefied Birch Wood

Article Preview

Abstract:

Birch wood veneer shorts from the plywood production plant in Latvia were fractionated to 0.63-2.00 mm and torrefied 30 min at 250, 260, 270, 280, 290 and 300 °C. The evaluation of hydrophobicity to untreated and torrefied birch wood was studied at constant climatic conditions (65±2% relative humidity, 22.8±0.3 °C) while standard chemical analysis methods were used to ascertain the structural and physical changes. Torrefaction process has a strong effect on the equilibrium moisture content of the fuel. The equilibrium moisture content of the torrefied wood decreased by 34% and more compared to the raw wood. Compositional analysis showed that the hemicelluloses are thermally more unstable than cellulose and lignin. During torrefaction process, hemicelluloses were almost removed, but extensive cellulose and light lignin degradation occurred only at torrefaction temperature of 300 °C. As the optimal torrefaction temperature can be considered 280 °C, where equilibrium moisture content of fuel was 5.9% and higher heating value 20.1 MJ/kg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-101

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Commission. Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/ 77/EC and 2003/30/EC. (2009).

DOI: 10.1017/cbo9780511664885.044

Google Scholar

[2] C.N. Hamelinck, R.A.A. Suurs, A.P.C. Faaij, International bioenergy transport costs and energy balance, Biomass Bioenerg. 29 (2005) 114-134.

DOI: 10.1016/j.biombioe.2005.04.002

Google Scholar

[3] R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renew. Sustain. Energy. Rev. 15 (2011) 2262-2289.

DOI: 10.1016/j.rser.2011.02.015

Google Scholar

[4] European Commission. COM(2014) 15 final. A policy framework for climate and energy in the period from 2020 to 2030. (2014).

Google Scholar

[5] D. Yue, F. You, S.W. Snyder, Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges, Comput. Chem. Eng. 66 (2014) 36-56.

DOI: 10.1016/j.compchemeng.2013.11.016

Google Scholar

[6] M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass Bioenerg. 35 (2011) 3748-3762.

DOI: 10.1016/j.biombioe.2011.06.023

Google Scholar

[7] E. Alakangas, Properties of wood fuels used in Finland - BIOSOUTH. Jyväskylä: (2005).

Google Scholar

[8] W. -H. Chen, P. -C. Kuo, Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass, Energy. 36 (2011) 803-811.

DOI: 10.1016/j.energy.2010.12.036

Google Scholar

[9] F.F. Felfli, C.A. Luengo, J.A. Suárez, P.A. Beatón, Wood briquette torrefaction, Energy Sustain. Dev. 9 (2005) 19-22.

DOI: 10.1016/s0973-0826(08)60519-0

Google Scholar

[10] M. Strandberg, I. Olofsson, I. Pommer, S. Wiklund-Lindström, K. Åberg, A. Nordin, Effects of temperature and residence time on continuous torrefaction of spruce wood, Fuel Process. Technol. 134 (2015) 387-398.

DOI: 10.1016/j.fuproc.2015.02.021

Google Scholar

[11] W. -H. Chen, S. -H. Liu, T. -T. Juang, C. -M. Tsai, Y. -Q. Zhuang, Characterization of solid and liquid products from bamboo torrefaction, Appl. Energy. 160 (2015) 829-835.

DOI: 10.1016/j.apenergy.2015.03.022

Google Scholar

[12] B. Arias, C. Pevida, J. Fermoso, M.G. Plaza, F. Rubiera, J.J. Pis, Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process. Technol. 89 (2008) 169-175.

DOI: 10.1016/j.fuproc.2007.09.002

Google Scholar

[13] M. Phanphanich, S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol. 102 (2011) 1246-1253.

DOI: 10.1016/j.biortech.2010.08.028

Google Scholar

[14] L. Shang, J. Ahrenfeldt, J.K. Holm, A.R. Sanadi, S. Barsberg, T. Thomsen, W. Stelte, U.B. Henriksen, Changes of chemical and mechanical behavior of torrefied wheat straw, Biomass Bioenerg. 40 (2012) 63-70.

DOI: 10.1016/j.biombioe.2012.01.049

Google Scholar

[15] S.V. Glass, S.L. Zelinka, Moisture relations and physical properties of wood, in: Wood handbook: Wood as an engineering material. Centennial ed. Forest Products Laboratory, Madison, 2010, p.4. 1-4. 19.

Google Scholar

[16] T. Khazraie Shoulaifar, N. DeMartini, M. Zevenhoven, F. Verhoeff, J. Kiel, M. Hupa, Ash-forming matter in torrefied birch wood: Changes in chemical association, Energ. Fuel. 27 (2013) 5684-5690.

DOI: 10.1021/ef4005175

Google Scholar

[17] J. Zawadzki, M. Wisniewski, 13C NMR study of cellulose thermal treatment, J. Anal. Appl. Pyrolysis. 62 (2002) 111-121.

DOI: 10.1016/s0165-2370(00)00217-5

Google Scholar

[18] G.N. Inari, S. Mounguengui, S. Dumarçay, M. Pétrissans, P. Gérardin, Evidence of char formation during wood heat treatment by mild pyrolysis, Polym. Degrad. Stab. 92 (2007) 997-1002.

DOI: 10.1016/j.polymdegradstab.2007.03.003

Google Scholar