[1]
European Commission. Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/ 77/EC and 2003/30/EC. (2009).
DOI: 10.1017/cbo9780511664885.044
Google Scholar
[2]
C.N. Hamelinck, R.A.A. Suurs, A.P.C. Faaij, International bioenergy transport costs and energy balance, Biomass Bioenerg. 29 (2005) 114-134.
DOI: 10.1016/j.biombioe.2005.04.002
Google Scholar
[3]
R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renew. Sustain. Energy. Rev. 15 (2011) 2262-2289.
DOI: 10.1016/j.rser.2011.02.015
Google Scholar
[4]
European Commission. COM(2014) 15 final. A policy framework for climate and energy in the period from 2020 to 2030. (2014).
Google Scholar
[5]
D. Yue, F. You, S.W. Snyder, Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges, Comput. Chem. Eng. 66 (2014) 36-56.
DOI: 10.1016/j.compchemeng.2013.11.016
Google Scholar
[6]
M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass Bioenerg. 35 (2011) 3748-3762.
DOI: 10.1016/j.biombioe.2011.06.023
Google Scholar
[7]
E. Alakangas, Properties of wood fuels used in Finland - BIOSOUTH. Jyväskylä: (2005).
Google Scholar
[8]
W. -H. Chen, P. -C. Kuo, Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass, Energy. 36 (2011) 803-811.
DOI: 10.1016/j.energy.2010.12.036
Google Scholar
[9]
F.F. Felfli, C.A. Luengo, J.A. Suárez, P.A. Beatón, Wood briquette torrefaction, Energy Sustain. Dev. 9 (2005) 19-22.
DOI: 10.1016/s0973-0826(08)60519-0
Google Scholar
[10]
M. Strandberg, I. Olofsson, I. Pommer, S. Wiklund-Lindström, K. Åberg, A. Nordin, Effects of temperature and residence time on continuous torrefaction of spruce wood, Fuel Process. Technol. 134 (2015) 387-398.
DOI: 10.1016/j.fuproc.2015.02.021
Google Scholar
[11]
W. -H. Chen, S. -H. Liu, T. -T. Juang, C. -M. Tsai, Y. -Q. Zhuang, Characterization of solid and liquid products from bamboo torrefaction, Appl. Energy. 160 (2015) 829-835.
DOI: 10.1016/j.apenergy.2015.03.022
Google Scholar
[12]
B. Arias, C. Pevida, J. Fermoso, M.G. Plaza, F. Rubiera, J.J. Pis, Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process. Technol. 89 (2008) 169-175.
DOI: 10.1016/j.fuproc.2007.09.002
Google Scholar
[13]
M. Phanphanich, S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol. 102 (2011) 1246-1253.
DOI: 10.1016/j.biortech.2010.08.028
Google Scholar
[14]
L. Shang, J. Ahrenfeldt, J.K. Holm, A.R. Sanadi, S. Barsberg, T. Thomsen, W. Stelte, U.B. Henriksen, Changes of chemical and mechanical behavior of torrefied wheat straw, Biomass Bioenerg. 40 (2012) 63-70.
DOI: 10.1016/j.biombioe.2012.01.049
Google Scholar
[15]
S.V. Glass, S.L. Zelinka, Moisture relations and physical properties of wood, in: Wood handbook: Wood as an engineering material. Centennial ed. Forest Products Laboratory, Madison, 2010, p.4. 1-4. 19.
Google Scholar
[16]
T. Khazraie Shoulaifar, N. DeMartini, M. Zevenhoven, F. Verhoeff, J. Kiel, M. Hupa, Ash-forming matter in torrefied birch wood: Changes in chemical association, Energ. Fuel. 27 (2013) 5684-5690.
DOI: 10.1021/ef4005175
Google Scholar
[17]
J. Zawadzki, M. Wisniewski, 13C NMR study of cellulose thermal treatment, J. Anal. Appl. Pyrolysis. 62 (2002) 111-121.
DOI: 10.1016/s0165-2370(00)00217-5
Google Scholar
[18]
G.N. Inari, S. Mounguengui, S. Dumarçay, M. Pétrissans, P. Gérardin, Evidence of char formation during wood heat treatment by mild pyrolysis, Polym. Degrad. Stab. 92 (2007) 997-1002.
DOI: 10.1016/j.polymdegradstab.2007.03.003
Google Scholar