[1]
C. Edvardsen, Water Penetrability and Autogenous Healing of Separation Cracks in Concrete, Betonwerk und Fertigteil-Technik. 62(11) (1996) 77-85.
Google Scholar
[2]
V. Rahhal, V. Bonavetti, A. Delgado, C. Pedrajas, R. Talero, Scheme of the Portland cement hydration with crystalline mineral admixtures and other aspects, Silicates Industriels. 74(11) (2009) 347-352.
Google Scholar
[3]
V.T. N Dao, P.F. Dux, P.H. Morris, A.H. Carse, Performance of permeability-reducing admixtures in marine concrete structures, ACI Materials Journal. 107(3) (2010) 291-296.
DOI: 10.14359/51663758
Google Scholar
[4]
S. Bohus, R. Drochytka, L. Taranza, L., Fly-ash usage in new cement-based material for concrete waterproofing. Advanced Materials Research. 535-537 (2012) 1902-(1906).
DOI: 10.4028/www.scientific.net/amr.535-537.1902
Google Scholar
[5]
K. Wang, T. Hu, S. Xu, Influence of permeated crystalline waterproof materials on impermeability of concrete, Advanced Materials Research. 446-449 (2012) 954-960.
DOI: 10.4028/scientific5/amr.446-449.954
Google Scholar
[6]
M.R. Zhou, G.J. Cui, L.J. Gao, H.X. Qiao, Study on experiment of concrete compounding XYPEX and steel fiber. Applied Mechanics and Materials. 105-107 (2012) 1755-1759.
DOI: 10.4028/www.scientific.net/amm.105-107.1755
Google Scholar
[7]
P. Reiterman, O. Holcapek, M. Cachova, F. Vogel, M. Jogl, P. Konvalinka, Basic and hygric properties of concrete containing fine ceramic powder, Advanced Materials Research. 897 (2014) 188-191.
DOI: 10.4028/www.scientific.net/amr.897.188
Google Scholar
[8]
T. Scancella, J. Robert, Use of Xypex admixture to concrete as an inhibitor to reinforcement steel corrosion, Proceedings of the Materials Engineering Conference. 2 (1996) 1276-1280.
Google Scholar
[9]
J. Pazderka, Crystalline coating or crystalline admixture?, Concrete. 48(3) (2014) 20-21.
Google Scholar
[10]
J. Pazderka, Concrete with crystalline admixture for ventilated tunnel against moisture, Key Engineering Materials. 677 (2016) 108-113.
DOI: 10.4028/www.scientific.net/kem.677.108
Google Scholar
[11]
J. Pazderka, Changes in water vapor permeability of concrete due to crystalline materials, Concrete. 48(1) (2014) 45-46.
Google Scholar
[12]
K. Yuers, Chemical waterproofing more than skin deep, Concrete Engineering International, 8(1) (2004) 36-37.
Google Scholar
[13]
S. Bohus, R. Drochytka, Cement based material with crystal-growth ability under long term aggressive medium impact, Applied Mechanics and Materials. 166-169 (2012) 1773-1778.
DOI: 10.4028/www.scientific.net/amm.166-169.1773
Google Scholar
[14]
P. Reiterman, V. Bäumelt, Long-term sorption properties of mortars modified by crystallizing admixture, Advanced Materials Research. 1054 (2014) 71-74.
DOI: 10.4028/www.scientific.net/amr.1054.71
Google Scholar
[15]
F. Klouda, The Capri South Beach fully protected with crystalline waterproofing-admixture-treated concrete, Concrete Engineering International. 14(4) (2008) 59-60.
Google Scholar
[16]
F. Klouda, Concrete crystallisation gives India's greenest airport wings, Concrete. 44(3) (2010) 33-34.
Google Scholar
[17]
T.L. Weng, A. Cheng, Influence of curing environment on concrete with crystalline admixture, Monatshefte fur Chemie. 145(1) (2014) 195-200.
DOI: 10.1007/s00706-013-0965-z
Google Scholar
[18]
EN 12390-8 Testing hardened concrete - Part 8: Depth of penetration of water under pressure. (2009).
Google Scholar
[19]
R. Barnes, Permeability Testing of Site Concrete, The Concrete Society, Camberley, (2008).
Google Scholar
[20]
EN 206 Concrete - Specification, performance, production and conformity. (2014).
Google Scholar