[1]
R. Vochten, G. Petre, Study of the heat of reversible adsorption at the air-solution interface. II. experimental determination of the heat of reversible adsorption of some alcohols, J. Coll. Interf. Sci. 42(2) (1973) 320-327.
DOI: 10.1016/0021-9797(73)90295-6
Google Scholar
[2]
Y. Abe, A. Iwasaki, K. Tanaka, Microgravity experiments on phase change of self-rewetting fluids, Ann. New York Acad. Sci. 1027(1) (2004) 269-285.
DOI: 10.1196/annals.1324.022
Google Scholar
[3]
Y. Abe, Thermal management with Phase Change of Self-rewetting Fluids, ASME Heat Transfer Division, Orlando, 2005, pp. (2005).
DOI: 10.1115/imece2005-79174
Google Scholar
[4]
Y. Abe, Self-rewetting fluids, Ann. New York Acad. Sci. 1077(1) (2006) 650-667.
Google Scholar
[5]
Y. Abe, Terrestrial and microgravity applications of self-rewettingfluids, Micrograv. Sci. Tech. 19(3) (2007) 11-12.
Google Scholar
[6]
R. Savino, N. di Francescantonio, R. Fortezza, Y. Abe, Heat pipes with binary mixtures and inverse marangoni effects for microgravity applications, Acta Astron. 61(1) (2007) 16-26.
DOI: 10.1016/j.actaastro.2007.01.002
Google Scholar
[7]
R. Savino, A. Cecere, R. di Paola, Surface tension-driven flow in wickless heat pipes with self-rewetting fluids, Int. J. Heat Fluid Flow, 30(2) (2009) 380-388.
DOI: 10.1016/j.ijheatfluidflow.2009.01.009
Google Scholar
[8]
R. Savino, R. Di Paola, A. Cecere, R. Fortezza, Self-rewetting heat transfer fluids and nanobrines for space heat pipes, Acta Astron. 67(9) (2010) 1030-1037.
DOI: 10.1016/j.actaastro.2010.06.034
Google Scholar
[9]
N. di Francescantonio, R. Savino, Y. Abe, New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement, Int. J. Heat Mass Transf. 51(25) (2008) 6199-6207.
DOI: 10.1016/j.ijheatmasstransfer.2008.01.040
Google Scholar
[10]
K. Fumoto, M. Kawaji, Performance improvement in pulsating heat pipes using a self-rewetting fluid, Int. ASME Summer Heat Transf. 3 (2009) 359-365, San Francisco, USA.
DOI: 10.1115/mnhmt2009-18202
Google Scholar
[11]
K. Fumoto, M. Kawaji, T. Kawanami, Effect of self-rewetting fluids on pulsatingheat pipe thermal performance, Int. Heat Mass Transfer Int. Conf. 3 (2010) 381-387.
DOI: 10.1115/mnhmt2009-18202
Google Scholar
[12]
Y. Hu, T. Liu, X. Li, S. Wang' Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid' Int. J. Heat Mass Transf. 70 (2014) 496-503.
DOI: 10.1016/j.ijheatmasstransfer.2013.11.031
Google Scholar
[13]
Y. Hu, S. Zhang, X. Li, S. Wang, Heat transfer enhancement of subcooled pool boiling with self-rewetting fluid, Int. J. Heat Mass Transf. 83 (2015) 64-68.
DOI: 10.1016/j.ijheatmasstransfer.2014.11.081
Google Scholar
[14]
V. A. Tracey, Pressing and sintering of nickel powders, Int. J. Powd. Metal-lurgy Powd. Tech. 20(4) (1984) 281-285.
Google Scholar
[15]
S. C. Wu, D. Wang, J. H. Gao, Z. Y. Huang, Y. M. Chen, Effect of the number of grooves on a wick's surface on the heat transfer performance of loop heat pipe, Appl. Therm. Eng. 71 (2014) 371-377.
DOI: 10.1016/j.applthermaleng.2014.06.042
Google Scholar
[16]
ASTM, Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use, Vol. 14. 04, 2005. New York.
DOI: 10.1520/e0128-99r19
Google Scholar
[17]
R. J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1(1988) 3-17.
Google Scholar