[1]
N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Materialia 47 (2002) 893–899.
DOI: 10.1016/s1359-6462(02)00282-8
Google Scholar
[2]
E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP, Materials Science and Engineering A 458 (2007) 226–234.
DOI: 10.1016/j.msea.2006.12.077
Google Scholar
[3]
V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Plastic working of metals by simple shear, Russian Metallurgy 1 (1981) 99–105.
Google Scholar
[4]
V.M. Segal, Materials processing by simple shear, Materials Science and Engineering A 197 (1995) 157–164.
Google Scholar
[5]
M. Haouaoui, I. Karaman, H.J. Maier, Flow stress anisotropy and Bauschinger effect in ultrafine grained copper, Acta Materialia 54 (2006) 5477–5488.
DOI: 10.1016/j.actamat.2006.07.022
Google Scholar
[6]
Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Development of fine grained structures using severe plastic deformation, Materials Science and Technology 16 (2000) 1239–1245.
DOI: 10.1179/026708300101507091
Google Scholar
[7]
Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Materialia 46 (1998) 3317–3331.
DOI: 10.1016/s1359-6454(97)00494-1
Google Scholar
[8]
K. Oh-ishi, Z. Horita, M. Nemoto, M. Furukawa, T.G. Langdon, Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metallurgical and Materials Transactions A 29 (1998) 2011–(2013).
DOI: 10.1007/s11661-998-0027-z
Google Scholar
[9]
Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia 35 (1996) 143–146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[10]
Y.J. Chen, Y.C. Chai, H.J. Roven, S.S. Gireesh, Y.D. Yu, J. Hjelen, Microstructure and mechanical properties of Al–xMg alloys processed by room temperature ECAP, Materials Science and Engineering A 545 (2012) 139–147.
DOI: 10.1016/j.msea.2012.03.012
Google Scholar
[11]
Y.J. Chen, J. Hjelen, H.J. Roven, Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis, Transactions of Nonferrous Metals Society of China 22 (2012).
DOI: 10.1016/s1003-6326(11)61390-3
Google Scholar
[12]
Y. Ito, Z. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Materials Science and Engineering A 503 (2009) 32–36.
DOI: 10.1016/j.msea.2008.03.055
Google Scholar
[13]
J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Materialia 53 (2005) 189–194.
DOI: 10.1016/j.scriptamat.2005.03.043
Google Scholar
[14]
M.S. Mohebbi, A. Akbarzadeh, Y.O. Yoon, S.K. Kim, Stress relaxation and flow behavior of ultrafine grained AA 1050, Mechanics of Materials 89 (2015) 23–34.
DOI: 10.1016/j.mechmat.2015.06.001
Google Scholar
[15]
D.C. Drucker, Plasticity theory strength-differential (SD) phenomenon, and volume expansion in metals and plastics, Metallurgical Transactions 4 (1973) 667–673.
DOI: 10.1007/bf02643073
Google Scholar
[16]
J.K. Mahato, P.S. De, A. Sarkar, A. Kundu, P.C. Chakraborti, Effect of deformation mode and grain size on Bauschinger behavior of annealed copper, International Journal of Fatigue 83 (2016) 42–52.
DOI: 10.1016/j.ijfatigue.2015.04.023
Google Scholar
[17]
M.F. Ashby, The deformation of plastically non-homogeneous materials, Philosophical Magazine 21 (1970) 399–424.
DOI: 10.1080/14786437008238426
Google Scholar
[18]
L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Scale dependent crystal plasticity framework with dislocation density and grain boundary effects, International Journal of Solids Structures 41 (2004) 5209–5230.
DOI: 10.1016/j.ijsolstr.2004.04.021
Google Scholar