The Evolution of the {110}<001> and {236}<385> Recrystallization Textures in Cu Alloys and High Mn Austenitic Steels with the Brass Rolling Texture

Abstract:

Article Preview

The {110}<112> rolling texture of Cu-22%Zn and Cu-30%Zn sheets having relatively low stacking fault energy transforms into the {236}<385> texture after recrystallization. The 40°<111> relation is approximately satisfied between the {110}<112> and {236}<385> textures. The 40°<111> relation is often addressed as a token of the oriented growth theory for the recrystallization texture evolution. On the other hand, Cu-16%Mn and Cu-1%P alloys and high Mn austenitic steels such as Fe-18%Mn-0.6%C, Fe-18%Mn-1.5%Al-0.6%C, and Fe-18%Mn-3%Al-0.6%C sheets having relatively high stacking fault energy also have the {110}<112> rolling texture, which transforms into the {110}<001> texture after recrystallization. The 40°<111> relation is not established between the {110}<112> rolling texture and the {110}<001> recrystallization texture. The differences are attributed to differences in the stacking fault energies of the materials. The phenomena can be explained by defects that dominates the stored energy of the rolled materials. When the grain boundary energy dominates the stored energy, the {236}<385> texture evolves after recrystallization. On the other hand, when dislocation energy dominates the stored energy, the {110}<001> texture evolves after recrystallization. The {110}<001> recrystallization texture evolution is well explained by the strain-energy-release-maximization theory. The 40°<111> relation is believed to originate in the maximum mobility of <111> tilt boundaries at a rotation angle of 40°.

Info:

Periodical:

Edited by:

Fusahito Yoshida and Hiroshi Hamasaki

Pages:

177-182

Citation:

D. N. Lee, "The Evolution of the {110}<001> and {236}<385> Recrystallization Textures in Cu Alloys and High Mn Austenitic Steels with the Brass Rolling Texture", Key Engineering Materials, Vol. 725, pp. 177-182, 2017

Online since:

December 2016

Authors:

Export:

Price:

$41.00

[1] T. Steffens, C. Schwink, A. Korner, H.P. Karnthaler, Phil. Mag. A56 (1987)161-173.

[2] P.A. Beck, H. Hu, Trans AIME. 194 (1952) 83-90.

[3] Y.C. Liu, R.H. Richman, Trans AIME. 218 (1960) 688-699.

[4] R.H. Richman, Y.C. Liu, Trans AIME. 221 (1961) 720.

[5] W.B. Hutchinson, F.M.C. Besag, C.W. Honess, Acta metal 21 (1973) 1685.

[6] K.H. Virnich, K. Lücke, in: G. Gottstein, K. Lücke (eds. ), Textures of Materials (Proc. ICOTOM 5), vol. 1, Springer-Verlag, Berlin (1978) p.397.

[7] O. Engler, J. Hirth, K. Lücke, Z. Metallkd. 86 (1995) 475.

[8] C.S. Barrett, Trans AIME. 137 (1940) 128-145.

[9] L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading. MA, 1975, p.145.

[10] J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, Y.M. Koo, Acta mater. 60 (2012) 2290.

[11] O. Engler, Acta mater. 48 (2000) 4820.

[12] O. Engler, Acta mater. 49 (2001) 1237.

[13] G. Gottstein, Physikalische Gruntlagen der Materialkunde, Springer Verlag, (1998).

[14] K.H. Oh, J. -S. Jeong J-S, Y.M. Koo, D.N. Lee, Materials Chemistry and Physics 16(2015)9-18.

[15] W.G. Burgers, P.C. Louwerse, Z Phys 61 (1931) 605-678.

[16] D.N. Lee, Scr. Metall. Mater. 32 (1995) 1689-1694.

[17] D.N. Lee, Phil Mag. 85 (2005) 297-322.

[18] D.N. Lee, Z. für Metallkd. 96 (2005) 259-268.

[19] D.N. Lee, H.N. Han, Recrystallization textures of metals and alloys. in: P. Wilson (ed. ), Recent developments in the study of recrystallization. InTech: Open Access Publisher; 2013. pp.3-59 Chapter 1. DOI: 10. 5772/56031.

[20] D.N. Lee, H. -J. Shin, S. -H. Hong, Key Eng Mater. 233-236 (2003) 515-520.

[21] T. Leffers, Texturen in Forschung und Praxis, Springer-Verlag, Berlin (1969), p.120.

[22] D.N. Lee, Thin Solid Films 434 (2003)183-189.

[23] D.N. Lee, Thin Solid Films 520 (2012) 3708, Corrigendum to.

[22] .

[24] G.I. Taylor, J. Inst Metals 62 (1938) 307.

[25] J.F.W. Bishop, R. Hill, Phil. Mag. 42 (1951) 414, 1298.

[26] M. Ferry, F.J. Humphreys, Acta Mater. 44 (1996) 1293.

[27] D.N. Lee, J. Mater. Process Tech. 117 (2001) 307-310.

[28] D.N. Lee, K. -H. Kim, Effects of asymmetric rolling parameters on texture development in aluminum sheets, in: M.Y. Demer (ed. ), Innovations in Processing and Manufacturing of Sheet Materials, TMS, Warrendale, Penn., 2001, pp.219-235.

[29] G. Gottstein, L.S. Shvindlerman. Grain Boundary Migration in Metals. Thermodynamics, Kinetics, Applications, CRC Press, (1999).