The Evolution of the {110}<001> and {236}<385> Recrystallization Textures in Cu Alloys and High Mn Austenitic Steels with the Brass Rolling Texture

Article Preview

Abstract:

The {110}<112> rolling texture of Cu-22%Zn and Cu-30%Zn sheets having relatively low stacking fault energy transforms into the {236}<385> texture after recrystallization. The 40°<111> relation is approximately satisfied between the {110}<112> and {236}<385> textures. The 40°<111> relation is often addressed as a token of the oriented growth theory for the recrystallization texture evolution. On the other hand, Cu-16%Mn and Cu-1%P alloys and high Mn austenitic steels such as Fe-18%Mn-0.6%C, Fe-18%Mn-1.5%Al-0.6%C, and Fe-18%Mn-3%Al-0.6%C sheets having relatively high stacking fault energy also have the {110}<112> rolling texture, which transforms into the {110}<001> texture after recrystallization. The 40°<111> relation is not established between the {110}<112> rolling texture and the {110}<001> recrystallization texture. The differences are attributed to differences in the stacking fault energies of the materials. The phenomena can be explained by defects that dominates the stored energy of the rolled materials. When the grain boundary energy dominates the stored energy, the {236}<385> texture evolves after recrystallization. On the other hand, when dislocation energy dominates the stored energy, the {110}<001> texture evolves after recrystallization. The {110}<001> recrystallization texture evolution is well explained by the strain-energy-release-maximization theory. The 40°<111> relation is believed to originate in the maximum mobility of <111> tilt boundaries at a rotation angle of 40°.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

December 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Steffens, C. Schwink, A. Korner, H.P. Karnthaler, Phil. Mag. A56 (1987)161-173.

Google Scholar

[2] P.A. Beck, H. Hu, Trans AIME. 194 (1952) 83-90.

Google Scholar

[3] Y.C. Liu, R.H. Richman, Trans AIME. 218 (1960) 688-699.

Google Scholar

[4] R.H. Richman, Y.C. Liu, Trans AIME. 221 (1961) 720.

Google Scholar

[5] W.B. Hutchinson, F.M.C. Besag, C.W. Honess, Acta metal 21 (1973) 1685.

Google Scholar

[6] K.H. Virnich, K. Lücke, in: G. Gottstein, K. Lücke (eds. ), Textures of Materials (Proc. ICOTOM 5), vol. 1, Springer-Verlag, Berlin (1978) p.397.

Google Scholar

[7] O. Engler, J. Hirth, K. Lücke, Z. Metallkd. 86 (1995) 475.

Google Scholar

[8] C.S. Barrett, Trans AIME. 137 (1940) 128-145.

Google Scholar

[9] L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading. MA, 1975, p.145.

Google Scholar

[10] J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, Y.M. Koo, Acta mater. 60 (2012) 2290.

Google Scholar

[11] O. Engler, Acta mater. 48 (2000) 4820.

Google Scholar

[12] O. Engler, Acta mater. 49 (2001) 1237.

Google Scholar

[13] G. Gottstein, Physikalische Gruntlagen der Materialkunde, Springer Verlag, (1998).

Google Scholar

[14] K.H. Oh, J. -S. Jeong J-S, Y.M. Koo, D.N. Lee, Materials Chemistry and Physics 16(2015)9-18.

Google Scholar

[15] W.G. Burgers, P.C. Louwerse, Z Phys 61 (1931) 605-678.

Google Scholar

[16] D.N. Lee, Scr. Metall. Mater. 32 (1995) 1689-1694.

Google Scholar

[17] D.N. Lee, Phil Mag. 85 (2005) 297-322.

Google Scholar

[18] D.N. Lee, Z. für Metallkd. 96 (2005) 259-268.

Google Scholar

[19] D.N. Lee, H.N. Han, Recrystallization textures of metals and alloys. in: P. Wilson (ed. ), Recent developments in the study of recrystallization. InTech: Open Access Publisher; 2013. pp.3-59 Chapter 1. DOI: 10. 5772/56031.

Google Scholar

[20] D.N. Lee, H. -J. Shin, S. -H. Hong, Key Eng Mater. 233-236 (2003) 515-520.

Google Scholar

[21] T. Leffers, Texturen in Forschung und Praxis, Springer-Verlag, Berlin (1969), p.120.

Google Scholar

[22] D.N. Lee, Thin Solid Films 434 (2003)183-189.

Google Scholar

[23] D.N. Lee, Thin Solid Films 520 (2012) 3708, Corrigendum to.

Google Scholar

[24] G.I. Taylor, J. Inst Metals 62 (1938) 307.

Google Scholar

[25] J.F.W. Bishop, R. Hill, Phil. Mag. 42 (1951) 414, 1298.

Google Scholar

[26] M. Ferry, F.J. Humphreys, Acta Mater. 44 (1996) 1293.

Google Scholar

[27] D.N. Lee, J. Mater. Process Tech. 117 (2001) 307-310.

Google Scholar

[28] D.N. Lee, K. -H. Kim, Effects of asymmetric rolling parameters on texture development in aluminum sheets, in: M.Y. Demer (ed. ), Innovations in Processing and Manufacturing of Sheet Materials, TMS, Warrendale, Penn., 2001, pp.219-235.

Google Scholar

[29] G. Gottstein, L.S. Shvindlerman. Grain Boundary Migration in Metals. Thermodynamics, Kinetics, Applications, CRC Press, (1999).

DOI: 10.1201/9781420054361

Google Scholar