Large Deflection Response of Rectangular Metal Sandwich Plates with Functionally Graded Foam Core Subjected to Blast Loading

Article Preview

Abstract:

A theoretical research is carried out to study the large deflection response of a fully clamped rectangular metal sandwich plates with functionally graded foam core subjected to blast loading. Using a new yield criterion for sandwich cross-section with graded foam core, we obtained the analytical solutions for the dynamic response of rectangular sandwich plates. Finite element simulations with gradient layers foam core model are performed to study the dynamic response of the sandwich plates with graded foam core subjected to blast loading. The results of the analyses seem to predict well the deflections that are given numerically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-155

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A. Fleck, V.S. Deshpande, The resistance of clamped sandwich beams to shock loading, J. Appl. Mech. 71 (2004) 386-401.

DOI: 10.1115/1.1629109

Google Scholar

[2] X. Qiu, V.S. Deshpande, N.A. Fleck, Dynamic response of a clamped circular sandwich plate subject to shock loading, J. Appl. Mech. 71 (2004) 637-645.

DOI: 10.1115/1.1778416

Google Scholar

[3] Q. Qin, C. Yuan, J. Zhang, T.J. Wang, Large deflection response of rectangular metal sandwich plates subjected to blast loading, Eur. J. Mech. A/Solids. 47 (2014) 14-22.

DOI: 10.1016/j.euromechsol.2014.02.016

Google Scholar

[4] N.A. Apetre, B.V. Sankar, D.R. Ambur, Low-velocity impact response of sandwich beams with functionally graded core, Int. J. Solids. Struct. 43 (2006) 2479-2496.

DOI: 10.1016/j.ijsolstr.2005.06.003

Google Scholar

[5] X.R. Liu, X.G. Tian, T.J. Lu, B. Liang, Sandwich plates with functionally graded metallic foam cores subjected to air blast loading, Int. J. Mech. Sci. 84 (2014) 61-72.

DOI: 10.1016/j.ijmecsci.2014.03.021

Google Scholar

[6] S. Li, X. Li, Z. Wang, G. Wu, G. Lu, L. Zhao, Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading, Compos. Part A Appl. Sci. Manuf. 80 (2016) 1-12.

DOI: 10.1016/j.compositesa.2015.09.025

Google Scholar

[7] V.S. Deshpande, N.A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, Int. J. Impact. Eng. 24 (2000) 277-298.

DOI: 10.1016/s0734-743x(99)00153-0

Google Scholar

[8] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal Foams: A Design Guide. Butterworth-Heinemann, Oxford, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[9] S.P. Santosa, T. Wierzbicki, A.G. Hanssen, M. Langseth, Experimental and numerical studies of foam-filled sections, Int. J. Impact. Eng. 24 (2000) 509-534.

DOI: 10.1016/s0734-743x(99)00036-6

Google Scholar

[10] N. Jones. Structural Impact (Second Edition). Cambridge University Press, Cambridge, (2012).

Google Scholar

[11] Q.H. Qin, F.F. Wang, W.L. Ai, M.S. Wang, Z.J. Wang, T.J. Wang, Plastic analysis of metal sandwich beams with a functionally graded core at finite deflection under transverse loading, Prepared, (2016).

Google Scholar

[12] V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids. 48 (2000) 1253-1283.

DOI: 10.1016/s0022-5096(99)00082-4

Google Scholar