Large Deformation Modeling of a Re-Entrant Honeycomb under Tensile Load

Article Preview

Abstract:

This work studies the large deformation behaviors of a re-entrant honeycomb subjected to the quasi-static tensile loading by employing the finite element (FE) package ABAQUS 6.11-2. The size effect of FE models is firstly investigated. Then, the deformation mechanism and stress-strain curve of a re-entrant honeycomb are discussed. Finally, the plastic Poisson’s ratio is calculated from the true strain and presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Lakes, Foam Structures with a Negative Poisson's Ratio, Science, 235(4792) (1987) 1038-1040.

DOI: 10.1126/science.235.4792.1038

Google Scholar

[2] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, and S.C. Rogers, Molecular Network Design, Nature, 353(6340) (1991) 124-124.

DOI: 10.1038/353124a0

Google Scholar

[3] R. Lakes and K. Elms, Indentability of Conventional and Negative Poisson's Ratio Foams, Journal of Composite Materials, 27(12) (1993) 1193-1202.

DOI: 10.1177/002199839302701203

Google Scholar

[4] C. Smith, F. Lehman, R. Wootton, and K. Evans, Strain Dependent Densification During Indentation in Auxetic Foams, Cellular Polymers, 18(2) (1999) 79-101.

Google Scholar

[5] D. Photiou, N. Prastiti, E. Sarris, and G. Constantinides, On the Conical Indentation Response of Elastic Auxetic Materials: Effects of Poisson's Ratio, Contact Friction and Cone Angle, International Journal of Solids and Structures, 81 (2016).

DOI: 10.1016/j.ijsolstr.2015.10.020

Google Scholar

[6] W. Yang, Z.M. Li, W. Shi, B.H. Xie, and M.B. Yang, Review on Auxetic Materials, Journal of Materials Science, 39(10) (2004) 3269-3279.

DOI: 10.1023/b:jmsc.0000026928.93231.e0

Google Scholar

[7] R. Lakes, Design Considerations for Materials with Negative Poisson's Ratios, Journal of Mechanical Design, 115(4) (1993) 696-700.

DOI: 10.1115/1.2919256

Google Scholar

[8] F. Scarpa and P. Tomlin, On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures, Fatigue & Fracture of Engineering Materials & Structures, 23(8) (2000) 717-720.

DOI: 10.1046/j.1460-2695.2000.00278.x

Google Scholar

[9] A. Bezazi, W. Boukharouba, and F. Scarpa, Mechanical Properties of Auxetic Carbon/Epoxy Composites: Static and Cyclic Fatigue Behaviour, Physica Status Solidi B-Basic Solid State Physics, 246(9) (2009) 2102-2110.

DOI: 10.1002/pssb.200982042

Google Scholar

[10] J. Donoghue, K. Alderson, and K. Evans, The Fracture Toughness of Composite Laminates with a Negative Poisson's Ratio, Physica Status Solidi B-Basic Solid State Physics, 246(9) (2009) 2011-(2017).

DOI: 10.1002/pssb.200982031

Google Scholar

[11] M. Bianchi, F.L. Scarpa, and C.W. Smith, Stiffness and Energy Dissipation in Polyurethane Auxetic Foams, Journal of Materials Science, 43(17) (2008) 5851-5860.

DOI: 10.1007/s10853-008-2841-5

Google Scholar

[12] B. Howell, P. Prendergast, and L. Hansen, Examination of Acoustic Behavior of Negative Poisson's Ratio Materials, Applied Acoustics, 43(2) (1994) 141-148.

DOI: 10.1016/0003-682x(94)90057-4

Google Scholar

[13] F. Scarpa, W. Bullough, and P. Lumley, Trends in Acoustic Properties of Iron Particle Seeded Auxetic Polyurethane Foam, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218(2) (2004).

DOI: 10.1243/095440604322887099

Google Scholar

[14] N. Chan and K. Evans, The Mechanical Properties of Conventional and Auxetic Foams. Part Ii: Shear, Journal of Cellular Plastics, 35(2) (1999) 166-183.

DOI: 10.1177/0021955x9903500205

Google Scholar

[15] N. Chan and K. Evans, The Mechanical Properties of Conventional and Auxetic Foams. Part I: Compression and Tension, Journal of Cellular Plastics, 35(2) (1999) 130-165.

DOI: 10.1177/0021955x9903500204

Google Scholar

[16] Y. Prawoto, Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson's Ratio, Computational Materials Science, 58 (2012) 140-153.

DOI: 10.1016/j.commatsci.2012.02.012

Google Scholar

[17] F. Robert, An Isotropic Three-Dimensional Structure with Poisson's Ratio-1, Journal of Elasticity, 15 (1985) 427-430.

Google Scholar

[18] I. Masters and K. Evans, Models for the Elastic Deformation of Honeycombs, Composite Structures, 35(4) (1996) 403-422.

DOI: 10.1016/s0263-8223(96)00054-2

Google Scholar

[19] M. Fu, O. Xu, L. Hu, and T. Yu, Nonlinear Shear Modulus of Re-Entrant Hexagonal Honeycombs under Large Deformation, International Journal of Solids and Structures, 80 (2016) 284-296.

DOI: 10.1016/j.ijsolstr.2015.11.015

Google Scholar

[20] L. Yang, O. Harrysson, H. West, and D. Cormier, Mechanical Properties of 3d Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing, International Journal of Solids and Structures, 69 (2015) 475-490.

DOI: 10.1016/j.ijsolstr.2015.05.005

Google Scholar

[21] G. Lu and T. Yu, Energy Absorption of Structures and Materials, Woodhead Publishing Limited, Cambridge, UK, (2003).

Google Scholar