[1]
R. Lakes, Foam Structures with a Negative Poisson's Ratio, Science, 235(4792) (1987) 1038-1040.
DOI: 10.1126/science.235.4792.1038
Google Scholar
[2]
K.E. Evans, M.A. Nkansah, I.J. Hutchinson, and S.C. Rogers, Molecular Network Design, Nature, 353(6340) (1991) 124-124.
DOI: 10.1038/353124a0
Google Scholar
[3]
R. Lakes and K. Elms, Indentability of Conventional and Negative Poisson's Ratio Foams, Journal of Composite Materials, 27(12) (1993) 1193-1202.
DOI: 10.1177/002199839302701203
Google Scholar
[4]
C. Smith, F. Lehman, R. Wootton, and K. Evans, Strain Dependent Densification During Indentation in Auxetic Foams, Cellular Polymers, 18(2) (1999) 79-101.
Google Scholar
[5]
D. Photiou, N. Prastiti, E. Sarris, and G. Constantinides, On the Conical Indentation Response of Elastic Auxetic Materials: Effects of Poisson's Ratio, Contact Friction and Cone Angle, International Journal of Solids and Structures, 81 (2016).
DOI: 10.1016/j.ijsolstr.2015.10.020
Google Scholar
[6]
W. Yang, Z.M. Li, W. Shi, B.H. Xie, and M.B. Yang, Review on Auxetic Materials, Journal of Materials Science, 39(10) (2004) 3269-3279.
DOI: 10.1023/b:jmsc.0000026928.93231.e0
Google Scholar
[7]
R. Lakes, Design Considerations for Materials with Negative Poisson's Ratios, Journal of Mechanical Design, 115(4) (1993) 696-700.
DOI: 10.1115/1.2919256
Google Scholar
[8]
F. Scarpa and P. Tomlin, On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures, Fatigue & Fracture of Engineering Materials & Structures, 23(8) (2000) 717-720.
DOI: 10.1046/j.1460-2695.2000.00278.x
Google Scholar
[9]
A. Bezazi, W. Boukharouba, and F. Scarpa, Mechanical Properties of Auxetic Carbon/Epoxy Composites: Static and Cyclic Fatigue Behaviour, Physica Status Solidi B-Basic Solid State Physics, 246(9) (2009) 2102-2110.
DOI: 10.1002/pssb.200982042
Google Scholar
[10]
J. Donoghue, K. Alderson, and K. Evans, The Fracture Toughness of Composite Laminates with a Negative Poisson's Ratio, Physica Status Solidi B-Basic Solid State Physics, 246(9) (2009) 2011-(2017).
DOI: 10.1002/pssb.200982031
Google Scholar
[11]
M. Bianchi, F.L. Scarpa, and C.W. Smith, Stiffness and Energy Dissipation in Polyurethane Auxetic Foams, Journal of Materials Science, 43(17) (2008) 5851-5860.
DOI: 10.1007/s10853-008-2841-5
Google Scholar
[12]
B. Howell, P. Prendergast, and L. Hansen, Examination of Acoustic Behavior of Negative Poisson's Ratio Materials, Applied Acoustics, 43(2) (1994) 141-148.
DOI: 10.1016/0003-682x(94)90057-4
Google Scholar
[13]
F. Scarpa, W. Bullough, and P. Lumley, Trends in Acoustic Properties of Iron Particle Seeded Auxetic Polyurethane Foam, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218(2) (2004).
DOI: 10.1243/095440604322887099
Google Scholar
[14]
N. Chan and K. Evans, The Mechanical Properties of Conventional and Auxetic Foams. Part Ii: Shear, Journal of Cellular Plastics, 35(2) (1999) 166-183.
DOI: 10.1177/0021955x9903500205
Google Scholar
[15]
N. Chan and K. Evans, The Mechanical Properties of Conventional and Auxetic Foams. Part I: Compression and Tension, Journal of Cellular Plastics, 35(2) (1999) 130-165.
DOI: 10.1177/0021955x9903500204
Google Scholar
[16]
Y. Prawoto, Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson's Ratio, Computational Materials Science, 58 (2012) 140-153.
DOI: 10.1016/j.commatsci.2012.02.012
Google Scholar
[17]
F. Robert, An Isotropic Three-Dimensional Structure with Poisson's Ratio-1, Journal of Elasticity, 15 (1985) 427-430.
Google Scholar
[18]
I. Masters and K. Evans, Models for the Elastic Deformation of Honeycombs, Composite Structures, 35(4) (1996) 403-422.
DOI: 10.1016/s0263-8223(96)00054-2
Google Scholar
[19]
M. Fu, O. Xu, L. Hu, and T. Yu, Nonlinear Shear Modulus of Re-Entrant Hexagonal Honeycombs under Large Deformation, International Journal of Solids and Structures, 80 (2016) 284-296.
DOI: 10.1016/j.ijsolstr.2015.11.015
Google Scholar
[20]
L. Yang, O. Harrysson, H. West, and D. Cormier, Mechanical Properties of 3d Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing, International Journal of Solids and Structures, 69 (2015) 475-490.
DOI: 10.1016/j.ijsolstr.2015.05.005
Google Scholar
[21]
G. Lu and T. Yu, Energy Absorption of Structures and Materials, Woodhead Publishing Limited, Cambridge, UK, (2003).
Google Scholar