Effects of Two Scaling Exponents on Swelling-Induced Softening of Elastomers under Equibiaxial and Planar Extensions

Article Preview

Abstract:

We study the effects of two scaling exponents on the mechanical properties of swollen elastomers under equibiaxial and planar extensions. Two scaling exponents are introduced to extend the Flory-Rehner free energy function, and are adjusted based on the previous study. Results show that swelling-induced strain softening is apt to occur under equibiaxial extension compared to uniaxial extension. The additional tensile stress in a lateral direction enables it to occur in relatively poor solvents, and accelerates the onset point. Planar extension shows more complicated responses because the stress in the constrained direction changes dramatically depending on the combination of two scaling exponents and the Flory-Huggins interaction parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-432

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks II. Swelling, J. Chem. Phys. 11 (1943) 521-526.

DOI: 10.1063/1.1723792

Google Scholar

[2] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, (1953).

Google Scholar

[3] L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, (1975).

Google Scholar

[4] P.J. Flory, J. Rehner, Effect of deformation on the swelling capacity of rubber, J. Chem. Phys. 12 (1944) 412-414.

DOI: 10.1063/1.1723884

Google Scholar

[5] G. Gee, The interaction between rubber and liquids. X. some new experimental tests of a statistical thermodynamic theory of rubber-liquid systems, Trans. Faraday Soc. 42 (1946) B033-B044.

DOI: 10.1039/tf946420b033

Google Scholar

[6] L.R.G. Treloar, The swelling of cross-linked amorphous polymers under strain, Trans. Faraday Soc. 46 (1950) 783-789.

DOI: 10.1039/tf9504600783

Google Scholar

[7] W. Hong, Z.S. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct. 46 (2009) 3282-3289.

DOI: 10.1016/j.ijsolstr.2009.04.022

Google Scholar

[8] M.K. Kang, R. Huang, A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints, Trans. ASME J. Appl. Mech. 77 (2010) 061004.

DOI: 10.1115/1.4001715

Google Scholar

[9] Z.W. Ding, Z.S. Liu, J.Y. Hu, S. Swaddiwudhipong, Z.Z. Yang, Inhomogeneous large deformation study of temperature-sensitive hydrogel, Int. J. Solids Struct. 50 (2013) 2610-2619.

DOI: 10.1016/j.ijsolstr.2013.04.011

Google Scholar

[10] D. Okumura, T. Kuwayama, N. Ohno, Effect of geometrical imperfections on swelling-induced buckling patterns in gel films with a square lattice of holes, Int. J. Solids Struct. 51 (2014) 154-163.

DOI: 10.1016/j.ijsolstr.2013.09.018

Google Scholar

[11] D. Okumura, T. Inagaki, N. Ohno, Effect of prestrains on swelling-induced buckling patterns in gel films with a square lattice of holes, Int. J. Solids Struct. 58 (2015) 288-300.

DOI: 10.1016/j.ijsolstr.2015.01.015

Google Scholar

[12] D. Okumura, A. Sasaki, N. Ohno, Swelling-induced buckling patterns in gel films with a square lattice of holes subjected to in-plane uniaxial and biaxial pretensions, Adv. Struct. Mater. 64 (2015) 319-334.

DOI: 10.1007/978-3-319-19440-0_14

Google Scholar

[13] J. Bastide, S. Candau, L. Leibler, Osmotic deswelling of gels by polymer solutions, Macromolecules 14 (1981) 719-726.

DOI: 10.1021/ma50004a050

Google Scholar

[14] C.J. Durning, K.N. Morman, Jr., Nonlinear swelling of polymer gels, J. Chem. Phys. 98 (1983) 4275-4293.

Google Scholar

[15] D. Okumura, A. Kondo, N. Ohno, Using two scaling exponents to describe the mechanical properties of swollen elastomers, J. Mech. Phys. Solids 90 (2016) 61-76.

DOI: 10.1016/j.jmps.2016.02.017

Google Scholar