[1]
M.D. Nave, M.R. Barnett, Microstructures and textures of pure magnesium deformed in plane-strain compression, Scripta Mater. 51 (2004) 881-885.
DOI: 10.1016/j.scriptamat.2004.07.002
Google Scholar
[2]
M.R. Barnett, Twinning and the ductility of magnesium alloys Part I. Tensile, twins, Mater. Sci. Eng. A464 (2007) 1-7.
Google Scholar
[3]
M.R. Barnett, Twinning and the ductility of magnesium alloys Part II. Contraction, twins, Mater. Sci. Eng. A464 (2007) 8-16.
Google Scholar
[4]
R. Gehrmann, M.M. Frommert, G. Gottstein, Texture effects on plastic deformation of magnesium, Mater. Sci. Eng. A395 (2005) 338-349.
DOI: 10.1016/j.msea.2005.01.002
Google Scholar
[5]
D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, C.N. Tomé, Internal strain and texture evolution during deformation twinning in magnesium, Mater. Sci. Eng. A399 (2005) 1-12.
DOI: 10.1016/j.msea.2005.02.016
Google Scholar
[6]
T. Al-Samman, G. Gottstein, Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms, Mater. Sci. Eng. A488 (2008) 406-414.
DOI: 10.1016/j.msea.2007.11.056
Google Scholar
[7]
N. Ogawa, M. Shiomi, K. Osakada, Forming limit of magnesium alloy at elevated temperatures for precision forging, Int. J. Machine Tools & Manuf. 42 (2002) 607-614.
DOI: 10.1016/s0890-6955(01)00149-3
Google Scholar
[8]
P. Klimanek, A. Pötzsch, Microstructure evolution under compressive plastic deformation of magnesium at different temperature and strain rates, Mater. Sci. Eng. A324 (2002) 145-150.
DOI: 10.1016/s0921-5093(01)01297-7
Google Scholar
[9]
A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn, Mater. Sci. Eng. A423 (2006) 292-299.
DOI: 10.1016/j.msea.2006.02.041
Google Scholar
[10]
M. Noda, H. Shimizu, K. Funami, H. Mori, T. Tsujimura, Mechanical properties and microstructure of AZ31 magnesium alloy during high temperature deformation, J. Japan Inst. Metals 71-9 (2007) 678-683 (in Japanese).
DOI: 10.2320/jinstmet.71.678
Google Scholar
[11]
T. Yoshikawa, M. Tokuda, T. Inaba, H. Iwasaki, K. Machino, N. Deguchi, Plastic deformation of AZ31 magnesium alloy under various temperature conditions, Zairyo 57-7 (2008) 688-695 (in Japanese).
DOI: 10.2472/jsms.57.688
Google Scholar
[12]
F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, L. Katgerman, Hot workability analysis of extruded AZ magnesium alloys with processing maps, Mater. Sci. Eng. A527 (2010) 735-744.
DOI: 10.1016/j.msea.2009.08.070
Google Scholar
[13]
G. -Z. Quan, T. -W. Ku, W. -J. Song, B. -S. Kang, The workability evaluation of wrought AZ80 magnesium alloy in hot compression, Mater. Design 32-4 (2011) 2462-2468.
DOI: 10.1016/j.matdes.2010.11.025
Google Scholar
[14]
I. Shimizu, N. Tada, K. Nakayama, The Influence of Strain Path on Biaxial Compressive Behavior of AZ31 Magnesium Alloy, Int. J. Modern Physics B 22 (2008) 5844-5849.
DOI: 10.1142/s0217979208051261
Google Scholar
[15]
I. Shimizu, Development and application of biaxial compression test device for metallic materials, Proc. 13th Int. Conf. on Exp. Mech. 215 (2007).
Google Scholar
[16]
D. Ando and J. Koike, Relationship between deformation-induced surface relief and double twinning in AZ31 magnesium alloy, J. Japan Inst. Metals 71-9 (2007) 684-687 (in Japanese).
DOI: 10.2320/jinstmet.71.684
Google Scholar